Wei-Hua Han , Qing-Yu Wang , Yu Long , Meng Xin , Yun-Ze Long , Chun-Cheng Hao
{"title":"利用新型电纺丝方法个性化定制面内导热网络","authors":"Wei-Hua Han , Qing-Yu Wang , Yu Long , Meng Xin , Yun-Ze Long , Chun-Cheng Hao","doi":"10.1016/j.compositesb.2024.111971","DOIUrl":null,"url":null,"abstract":"<div><div>Using one-dimensional (1D) nanofibers to induce the assembly of two-dimensional (2D) nanosheets is of great practical significance; naturally, electrospinning, as the most effective method to prepare long nanofibers, has attracted widespread attention. In this paper, a novel electrospinning method that can induce the directional deposition of nanofibers through electrode arrays has been proposed, optimized, and further applied to regulate the aligned assembly of boron nitride nanosheets (BNNSs) to prepare highly thermally conductive and electrically insulating polyvinylidene fluoride (PVDF)/BNNS composites. In particular, the intermittent-contact collection mode of electrospun nanofibers has further enriched the electrospinning system. The composites prepared by our strategy possess high in-plane thermal conductivity (18.86 W/(m·K)), volume resistivity (nearly 10<sup>15</sup> Ω cm), and breakdown strength (nearly 380 kV/mm). Furthermore, excellent mechanical properties, flexibility, and thermal conduction capability are vividly demonstrated. The proposed electrospinning method and the prepared PVDF/BNNS composites have great potential in the thermal management application of electronic devices in the 5G era.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"290 ","pages":"Article 111971"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Personalized customization of in-plane thermal conductive networks by a novel electrospinning method\",\"authors\":\"Wei-Hua Han , Qing-Yu Wang , Yu Long , Meng Xin , Yun-Ze Long , Chun-Cheng Hao\",\"doi\":\"10.1016/j.compositesb.2024.111971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using one-dimensional (1D) nanofibers to induce the assembly of two-dimensional (2D) nanosheets is of great practical significance; naturally, electrospinning, as the most effective method to prepare long nanofibers, has attracted widespread attention. In this paper, a novel electrospinning method that can induce the directional deposition of nanofibers through electrode arrays has been proposed, optimized, and further applied to regulate the aligned assembly of boron nitride nanosheets (BNNSs) to prepare highly thermally conductive and electrically insulating polyvinylidene fluoride (PVDF)/BNNS composites. In particular, the intermittent-contact collection mode of electrospun nanofibers has further enriched the electrospinning system. The composites prepared by our strategy possess high in-plane thermal conductivity (18.86 W/(m·K)), volume resistivity (nearly 10<sup>15</sup> Ω cm), and breakdown strength (nearly 380 kV/mm). Furthermore, excellent mechanical properties, flexibility, and thermal conduction capability are vividly demonstrated. The proposed electrospinning method and the prepared PVDF/BNNS composites have great potential in the thermal management application of electronic devices in the 5G era.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"290 \",\"pages\":\"Article 111971\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007832\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007832","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Personalized customization of in-plane thermal conductive networks by a novel electrospinning method
Using one-dimensional (1D) nanofibers to induce the assembly of two-dimensional (2D) nanosheets is of great practical significance; naturally, electrospinning, as the most effective method to prepare long nanofibers, has attracted widespread attention. In this paper, a novel electrospinning method that can induce the directional deposition of nanofibers through electrode arrays has been proposed, optimized, and further applied to regulate the aligned assembly of boron nitride nanosheets (BNNSs) to prepare highly thermally conductive and electrically insulating polyvinylidene fluoride (PVDF)/BNNS composites. In particular, the intermittent-contact collection mode of electrospun nanofibers has further enriched the electrospinning system. The composites prepared by our strategy possess high in-plane thermal conductivity (18.86 W/(m·K)), volume resistivity (nearly 1015 Ω cm), and breakdown strength (nearly 380 kV/mm). Furthermore, excellent mechanical properties, flexibility, and thermal conduction capability are vividly demonstrated. The proposed electrospinning method and the prepared PVDF/BNNS composites have great potential in the thermal management application of electronic devices in the 5G era.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.