MoS2 稳定 Ti3C2 MXene,为高氯酸铵的热分解提供出色的催化效果

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-11-06 DOI:10.1016/j.vacuum.2024.113812
Zhehong Lu , Jingyi Li , Binxin Li , Ruixuan Yuan , Guolin Cao , Shaoliang Guan , Wei Jiang , Jie Zhu
{"title":"MoS2 稳定 Ti3C2 MXene,为高氯酸铵的热分解提供出色的催化效果","authors":"Zhehong Lu ,&nbsp;Jingyi Li ,&nbsp;Binxin Li ,&nbsp;Ruixuan Yuan ,&nbsp;Guolin Cao ,&nbsp;Shaoliang Guan ,&nbsp;Wei Jiang ,&nbsp;Jie Zhu","doi":"10.1016/j.vacuum.2024.113812","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonium perchlorate (AP), the most widely used oxidizer in energetic materials, is crucial for studying catalytic thermal decomposition. Newly discovered Ti<sub>3</sub>C<sub>2</sub> MXene and MoS<sub>2</sub> demonstrating promising prospects in the field of the pyrolysis catalyst in AP. In this study, we employed a hydrothermal method to anchor nano-sized MoS<sub>2</sub> in situ on the surface of Ti<sub>3</sub>C<sub>2</sub> MXene, leading to the fabrication of MoS<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub> nanocomposites. Various characterizations indicated that MoS<sub>2</sub> was attached to the surface and edges of Ti<sub>3</sub>C<sub>2</sub>, thereby enhancing the stability and conductivity. Results revealed that upon the addition of 4 wt% MoS<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>, the low-temperature decomposition peak of AP reduced from 331.2 °C to 296.6 °C, while the high-temperature decomposition peak advanced from 427.5 °C to 387.1 °C, showing a superior catalytic effect compared to the individual MoS<sub>2</sub> or Ti<sub>3</sub>C<sub>2</sub>. Additionally, the catalytic mechanism of MoS<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub> on the thermal decomposition of AP may involve enhanced electrical conductivity, facilitating rapid proton transfer (H<sup>+</sup>), accelerated redox reactions, prompt release of gas products, and thereby expediting the progression of the decomposition reaction. Consequently, it can be anticipated that anchoring MoS<sub>2</sub> on the surface of Ti<sub>3</sub>C<sub>2</sub> represents an effective strategy for enhancing the catalytic activity of Ti<sub>3</sub>C<sub>2</sub> MXene towards the thermal decomposition of AP.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"231 ","pages":"Article 113812"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MoS2 stabilize Ti3C2 MXene for excellent catalytic effect of thermal decomposition of ammonium perchlorate\",\"authors\":\"Zhehong Lu ,&nbsp;Jingyi Li ,&nbsp;Binxin Li ,&nbsp;Ruixuan Yuan ,&nbsp;Guolin Cao ,&nbsp;Shaoliang Guan ,&nbsp;Wei Jiang ,&nbsp;Jie Zhu\",\"doi\":\"10.1016/j.vacuum.2024.113812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonium perchlorate (AP), the most widely used oxidizer in energetic materials, is crucial for studying catalytic thermal decomposition. Newly discovered Ti<sub>3</sub>C<sub>2</sub> MXene and MoS<sub>2</sub> demonstrating promising prospects in the field of the pyrolysis catalyst in AP. In this study, we employed a hydrothermal method to anchor nano-sized MoS<sub>2</sub> in situ on the surface of Ti<sub>3</sub>C<sub>2</sub> MXene, leading to the fabrication of MoS<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub> nanocomposites. Various characterizations indicated that MoS<sub>2</sub> was attached to the surface and edges of Ti<sub>3</sub>C<sub>2</sub>, thereby enhancing the stability and conductivity. Results revealed that upon the addition of 4 wt% MoS<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub>, the low-temperature decomposition peak of AP reduced from 331.2 °C to 296.6 °C, while the high-temperature decomposition peak advanced from 427.5 °C to 387.1 °C, showing a superior catalytic effect compared to the individual MoS<sub>2</sub> or Ti<sub>3</sub>C<sub>2</sub>. Additionally, the catalytic mechanism of MoS<sub>2</sub>-Ti<sub>3</sub>C<sub>2</sub> on the thermal decomposition of AP may involve enhanced electrical conductivity, facilitating rapid proton transfer (H<sup>+</sup>), accelerated redox reactions, prompt release of gas products, and thereby expediting the progression of the decomposition reaction. Consequently, it can be anticipated that anchoring MoS<sub>2</sub> on the surface of Ti<sub>3</sub>C<sub>2</sub> represents an effective strategy for enhancing the catalytic activity of Ti<sub>3</sub>C<sub>2</sub> MXene towards the thermal decomposition of AP.</div></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":\"231 \",\"pages\":\"Article 113812\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24008583\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24008583","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高氯酸铵(AP)是高能材料中应用最广泛的氧化剂,对于研究催化热分解至关重要。新发现的 Ti3C2 MXene 和 MoS2 在高氯酸铵热分解催化剂领域展示了广阔的前景。在本研究中,我们采用水热法将纳米级 MoS2 原位锚定在 Ti3C2 MXene 表面,从而制备出 MoS2-Ti3C2 纳米复合材料。各种表征表明,MoS2 附着在 Ti3C2 的表面和边缘,从而提高了稳定性和导电性。结果表明,添加 4 wt% 的 MoS2-Ti3C2 后,AP 的低温分解峰值从 331.2 ℃ 降至 296.6 ℃,而高温分解峰值则从 427.5 ℃ 升至 387.1 ℃,显示出与单独的 MoS2 或 Ti3C2 相比更优越的催化效果。此外,MoS2-Ti3C2 对 AP 热分解的催化机理可能包括增强导电性,促进质子(H+)快速转移,加速氧化还原反应,迅速释放气体产物,从而加快分解反应的进程。因此,可以预计在 Ti3C2 表面锚定 MoS2 是增强 Ti3C2 MXene 对 AP 热分解催化活性的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MoS2 stabilize Ti3C2 MXene for excellent catalytic effect of thermal decomposition of ammonium perchlorate
Ammonium perchlorate (AP), the most widely used oxidizer in energetic materials, is crucial for studying catalytic thermal decomposition. Newly discovered Ti3C2 MXene and MoS2 demonstrating promising prospects in the field of the pyrolysis catalyst in AP. In this study, we employed a hydrothermal method to anchor nano-sized MoS2 in situ on the surface of Ti3C2 MXene, leading to the fabrication of MoS2-Ti3C2 nanocomposites. Various characterizations indicated that MoS2 was attached to the surface and edges of Ti3C2, thereby enhancing the stability and conductivity. Results revealed that upon the addition of 4 wt% MoS2-Ti3C2, the low-temperature decomposition peak of AP reduced from 331.2 °C to 296.6 °C, while the high-temperature decomposition peak advanced from 427.5 °C to 387.1 °C, showing a superior catalytic effect compared to the individual MoS2 or Ti3C2. Additionally, the catalytic mechanism of MoS2-Ti3C2 on the thermal decomposition of AP may involve enhanced electrical conductivity, facilitating rapid proton transfer (H+), accelerated redox reactions, prompt release of gas products, and thereby expediting the progression of the decomposition reaction. Consequently, it can be anticipated that anchoring MoS2 on the surface of Ti3C2 represents an effective strategy for enhancing the catalytic activity of Ti3C2 MXene towards the thermal decomposition of AP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Effects of pressure on the electronic and optical properties of defect-free and defect-containing fused silica: A first-principles study The precipitation behavior of natural aging for Al-Cu-Li alloy after homogenization Editorial Board and Vacuum units The study on the magnetic FeCoNiCuAl high-entropy alloy film with excellent corrosion resistance Microstructural deformation behavior of laser shock peening Ni alloys: Experimental and molecular dynamics simulation investigations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1