利用机器学习预测盐水中的总碱度:使用 RapidMiner 的案例研究

Tue Duy Nguyen , Quynh Thi Phuong Le , Man Thi Truc Doan , Ha Manh Bui
{"title":"利用机器学习预测盐水中的总碱度:使用 RapidMiner 的案例研究","authors":"Tue Duy Nguyen ,&nbsp;Quynh Thi Phuong Le ,&nbsp;Man Thi Truc Doan ,&nbsp;Ha Manh Bui","doi":"10.1016/j.scowo.2024.100032","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the use of machine learning models to predict total alkalinity (TA) based on chloride concentration (Cl<sup>-</sup>), pH and temperature. Utilizing RapidMiner's Auto Mode, six machine learning models were applied to a dataset of 111 water samples from the Nhà Bè River. The models' performances were evaluated using Root Mean Square Error (RMSE) and R² metrics, with the Generalized Linear Model (GLM), Support Vector Machine (SVM) and Deep Learning models identified as the top performers. Correlation and coefficient analyses revealed that Cl<sup>-</sup> had the most significant impact on TA prediction, followed by temperature and pH. These findings underscore the effectiveness of machine learning in water quality monitoring, presenting a cost-effective alternative to traditional chemical analysis methods.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"4 ","pages":"Article 100032"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting total alkalinity in saline water using machine learning: A case study with RapidMiner\",\"authors\":\"Tue Duy Nguyen ,&nbsp;Quynh Thi Phuong Le ,&nbsp;Man Thi Truc Doan ,&nbsp;Ha Manh Bui\",\"doi\":\"10.1016/j.scowo.2024.100032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the use of machine learning models to predict total alkalinity (TA) based on chloride concentration (Cl<sup>-</sup>), pH and temperature. Utilizing RapidMiner's Auto Mode, six machine learning models were applied to a dataset of 111 water samples from the Nhà Bè River. The models' performances were evaluated using Root Mean Square Error (RMSE) and R² metrics, with the Generalized Linear Model (GLM), Support Vector Machine (SVM) and Deep Learning models identified as the top performers. Correlation and coefficient analyses revealed that Cl<sup>-</sup> had the most significant impact on TA prediction, followed by temperature and pH. These findings underscore the effectiveness of machine learning in water quality monitoring, presenting a cost-effective alternative to traditional chemical analysis methods.</div></div>\",\"PeriodicalId\":101197,\"journal\":{\"name\":\"Sustainable Chemistry One World\",\"volume\":\"4 \",\"pages\":\"Article 100032\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry One World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950357424000325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357424000325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了机器学习模型在氯化物浓度(Cl-)、pH 值和温度基础上预测总碱度(TA)的应用情况。利用 RapidMiner 的自动模式,将 6 个机器学习模型应用于 111 个来自那不勒斯河的水样数据集。使用均方根误差(RMSE)和 R² 指标对模型的性能进行了评估,发现广义线性模型(GLM)、支持向量机(SVM)和深度学习模型的性能最佳。相关性和系数分析表明,Cl- 对 TA 预测的影响最大,其次是温度和 pH 值。这些发现强调了机器学习在水质监测中的有效性,为传统的化学分析方法提供了一种具有成本效益的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting total alkalinity in saline water using machine learning: A case study with RapidMiner
This study investigates the use of machine learning models to predict total alkalinity (TA) based on chloride concentration (Cl-), pH and temperature. Utilizing RapidMiner's Auto Mode, six machine learning models were applied to a dataset of 111 water samples from the Nhà Bè River. The models' performances were evaluated using Root Mean Square Error (RMSE) and R² metrics, with the Generalized Linear Model (GLM), Support Vector Machine (SVM) and Deep Learning models identified as the top performers. Correlation and coefficient analyses revealed that Cl- had the most significant impact on TA prediction, followed by temperature and pH. These findings underscore the effectiveness of machine learning in water quality monitoring, presenting a cost-effective alternative to traditional chemical analysis methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting total alkalinity in saline water using machine learning: A case study with RapidMiner The impact of supplemental UV-B radiation on growth and biochemical constituents in Vigna unguiculata L. Walp and Pisum sativum L. Visible light photocatalytic reduction of toxic chemical organophosphate monocrotophos using reduced graphene oxide derived from bamboo leaves Copper(II) isonicotinate metal-organic framework for reusable adsorption of salmeterol from wastewater Recent advances in green chemistry approaches for pharmaceutical synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1