多层次相似性转移和自适应融合数据增强,用于少镜头物体检测

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-11-12 DOI:10.1016/j.jvcir.2024.104340
Songhao Zhu, Yi Wang
{"title":"多层次相似性转移和自适应融合数据增强,用于少镜头物体检测","authors":"Songhao Zhu,&nbsp;Yi Wang","doi":"10.1016/j.jvcir.2024.104340","DOIUrl":null,"url":null,"abstract":"<div><div>Few-shot object detection method aims to learn novel classes through a small number of annotated novel class samples without having a catastrophic impact on previously learned knowledge, thereby expanding the trained model’s ability to detect novel classes. For existing few-shot object detection methods, there is a prominent false positive issue for the novel class samples due to the similarity in appearance features and feature distribution between the novel classes and the base classes. That is, the following two issues need to be solved: (1) How to detect these false positive samples in large-scale dataset, and (2) How to utilize the correlations between these false positive samples and other samples to improve the accuracy of the detection model. To address the first issue, an adaptive fusion data augmentation strategy is utilized to enhance the diversity of novel class samples and further alleviate the issue of false positive novel class samples. To address the second issue, a similarity transfer strategy is here proposed to effectively utilize the correlations between different categories. Experimental results demonstrate that the proposed method performs well in various settings of PASCAL VOC and MSCOCO datasets, achieving 48.7 and 11.3 on PASCAL VOC and MSCOCO under few-shot settings (shot = 1) in terms of nAP50 respectively.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"105 ","pages":"Article 104340"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection\",\"authors\":\"Songhao Zhu,&nbsp;Yi Wang\",\"doi\":\"10.1016/j.jvcir.2024.104340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Few-shot object detection method aims to learn novel classes through a small number of annotated novel class samples without having a catastrophic impact on previously learned knowledge, thereby expanding the trained model’s ability to detect novel classes. For existing few-shot object detection methods, there is a prominent false positive issue for the novel class samples due to the similarity in appearance features and feature distribution between the novel classes and the base classes. That is, the following two issues need to be solved: (1) How to detect these false positive samples in large-scale dataset, and (2) How to utilize the correlations between these false positive samples and other samples to improve the accuracy of the detection model. To address the first issue, an adaptive fusion data augmentation strategy is utilized to enhance the diversity of novel class samples and further alleviate the issue of false positive novel class samples. To address the second issue, a similarity transfer strategy is here proposed to effectively utilize the correlations between different categories. Experimental results demonstrate that the proposed method performs well in various settings of PASCAL VOC and MSCOCO datasets, achieving 48.7 and 11.3 on PASCAL VOC and MSCOCO under few-shot settings (shot = 1) in terms of nAP50 respectively.</div></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"105 \",\"pages\":\"Article 104340\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002967\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002967","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

少量对象检测方法旨在通过少量标注的新类别样本来学习新类别,而不会对先前学习的知识产生灾难性影响,从而扩大训练模型检测新类别的能力。对于现有的少量物体检测方法来说,由于新类别与基础类别在外观特征和特征分布上的相似性,新类别样本的假阳性问题非常突出。也就是说,需要解决以下两个问题:(1)如何在大规模数据集中检测出这些假阳性样本;(2)如何利用这些假阳性样本与其他样本之间的相关性来提高检测模型的准确性。针对第一个问题,我们采用了一种自适应融合数据增强策略,以增强新类别样本的多样性,进一步缓解新类别样本的假阳性问题。为解决第二个问题,本文提出了一种相似性转移策略,以有效利用不同类别之间的相关性。实验结果表明,所提出的方法在 PASCAL VOC 和 MSCOCO 数据集的各种设置下均表现良好,在 PASCAL VOC 和 MSCOCO 数据集的少镜头设置(镜头 = 1)下,nAP50 分别达到 48.7 和 11.3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection
Few-shot object detection method aims to learn novel classes through a small number of annotated novel class samples without having a catastrophic impact on previously learned knowledge, thereby expanding the trained model’s ability to detect novel classes. For existing few-shot object detection methods, there is a prominent false positive issue for the novel class samples due to the similarity in appearance features and feature distribution between the novel classes and the base classes. That is, the following two issues need to be solved: (1) How to detect these false positive samples in large-scale dataset, and (2) How to utilize the correlations between these false positive samples and other samples to improve the accuracy of the detection model. To address the first issue, an adaptive fusion data augmentation strategy is utilized to enhance the diversity of novel class samples and further alleviate the issue of false positive novel class samples. To address the second issue, a similarity transfer strategy is here proposed to effectively utilize the correlations between different categories. Experimental results demonstrate that the proposed method performs well in various settings of PASCAL VOC and MSCOCO datasets, achieving 48.7 and 11.3 on PASCAL VOC and MSCOCO under few-shot settings (shot = 1) in terms of nAP50 respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT A memory access number constraint-based string prediction technique for high throughput SCC implemented in AVS3 Faster-slow network fused with enhanced fine-grained features for action recognition Lightweight macro-pixel quality enhancement network for light field images compressed by versatile video coding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1