Quan Li , Chao Zhang , Man Shi , Jianhua Lv , Changhui Peng , Junbo Zhang , Scott X. Chang , Tingting Cao , Tong Li , Xinzhang Song
{"title":"长期氮添加对亚热带毛竹林的土壤呼吸有积极的遗产效应","authors":"Quan Li , Chao Zhang , Man Shi , Jianhua Lv , Changhui Peng , Junbo Zhang , Scott X. Chang , Tingting Cao , Tong Li , Xinzhang Song","doi":"10.1016/j.geoderma.2024.117092","DOIUrl":null,"url":null,"abstract":"<div><div>Soil respiration (Rs), a critical component of the global carbon (C) cycle, is sensitive to changes in nitrogen (N) deposition. However, the temporal dynamics of the effects of long-term (≥ five years) N addition and its cessation on Rs in forests remain uncertain. We conducted a continuous field experiment, which included three years of N cessation after seven years of N addition at different rates (0, 30, 60, and 90 kg N∙ha<sup>−1</sup>∙yr<sup>−1</sup>), in a subtropical Moso bamboo forest to explore the response of Rs and its components, determine the influence of biotic and abiotic factors to long-term N addition, and identify any legacy effects. We found a two-phase pattern of Rs, with a significant increase in the first two years across three N addition rates and a constant significant increase in the last five years across low and medium N addition; however, Rs did not change under high N addition. The nitrogen addition legacy effects significantly increased Rs and autotrophic respiration but reduced heterotrophic respiration, which could persist for at least three years. The mechanism underlying the temporal variation in Rs and its components was related to the increase in fine root biomass and changes in soil microbial biomass and bacteria to fungi ratio. These findings have advanced our understanding of soil CO<sub>2</sub> dynamics in subtropical forests under N deposition. Moreover, they reveal that the legacy effects of long-term N addition should be incorporated into global C cycle modeling to reflect the persistent effects of N deposition on forest ecosystem C budgets.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"452 ","pages":"Article 117092"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-term nitrogen addition has a positive legacy effect on soil respiration in subtropical Moso bamboo forests\",\"authors\":\"Quan Li , Chao Zhang , Man Shi , Jianhua Lv , Changhui Peng , Junbo Zhang , Scott X. Chang , Tingting Cao , Tong Li , Xinzhang Song\",\"doi\":\"10.1016/j.geoderma.2024.117092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Soil respiration (Rs), a critical component of the global carbon (C) cycle, is sensitive to changes in nitrogen (N) deposition. However, the temporal dynamics of the effects of long-term (≥ five years) N addition and its cessation on Rs in forests remain uncertain. We conducted a continuous field experiment, which included three years of N cessation after seven years of N addition at different rates (0, 30, 60, and 90 kg N∙ha<sup>−1</sup>∙yr<sup>−1</sup>), in a subtropical Moso bamboo forest to explore the response of Rs and its components, determine the influence of biotic and abiotic factors to long-term N addition, and identify any legacy effects. We found a two-phase pattern of Rs, with a significant increase in the first two years across three N addition rates and a constant significant increase in the last five years across low and medium N addition; however, Rs did not change under high N addition. The nitrogen addition legacy effects significantly increased Rs and autotrophic respiration but reduced heterotrophic respiration, which could persist for at least three years. The mechanism underlying the temporal variation in Rs and its components was related to the increase in fine root biomass and changes in soil microbial biomass and bacteria to fungi ratio. These findings have advanced our understanding of soil CO<sub>2</sub> dynamics in subtropical forests under N deposition. Moreover, they reveal that the legacy effects of long-term N addition should be incorporated into global C cycle modeling to reflect the persistent effects of N deposition on forest ecosystem C budgets.</div></div>\",\"PeriodicalId\":12511,\"journal\":{\"name\":\"Geoderma\",\"volume\":\"452 \",\"pages\":\"Article 117092\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoderma\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016706124003215\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706124003215","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Long-term nitrogen addition has a positive legacy effect on soil respiration in subtropical Moso bamboo forests
Soil respiration (Rs), a critical component of the global carbon (C) cycle, is sensitive to changes in nitrogen (N) deposition. However, the temporal dynamics of the effects of long-term (≥ five years) N addition and its cessation on Rs in forests remain uncertain. We conducted a continuous field experiment, which included three years of N cessation after seven years of N addition at different rates (0, 30, 60, and 90 kg N∙ha−1∙yr−1), in a subtropical Moso bamboo forest to explore the response of Rs and its components, determine the influence of biotic and abiotic factors to long-term N addition, and identify any legacy effects. We found a two-phase pattern of Rs, with a significant increase in the first two years across three N addition rates and a constant significant increase in the last five years across low and medium N addition; however, Rs did not change under high N addition. The nitrogen addition legacy effects significantly increased Rs and autotrophic respiration but reduced heterotrophic respiration, which could persist for at least three years. The mechanism underlying the temporal variation in Rs and its components was related to the increase in fine root biomass and changes in soil microbial biomass and bacteria to fungi ratio. These findings have advanced our understanding of soil CO2 dynamics in subtropical forests under N deposition. Moreover, they reveal that the legacy effects of long-term N addition should be incorporated into global C cycle modeling to reflect the persistent effects of N deposition on forest ecosystem C budgets.
期刊介绍:
Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.