不同孔隙度砂岩的高压热导率、超声波测量速度和推导弹性模量

IF 3.5 2区 工程技术 Q3 ENERGY & FUELS Geothermics Pub Date : 2024-11-10 DOI:10.1016/j.geothermics.2024.103195
Eugene G. Pashuk , Ada E. Ramazanova , Ilmutdin M. Abdulagatov
{"title":"不同孔隙度砂岩的高压热导率、超声波测量速度和推导弹性模量","authors":"Eugene G. Pashuk ,&nbsp;Ada E. Ramazanova ,&nbsp;Ilmutdin M. Abdulagatov","doi":"10.1016/j.geothermics.2024.103195","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of pressure on thermal conductivity is an important for understanding the heat transfer processes in modeling applications in geothermal reservoirs and for optimization of the technology of geothermal energy extraction processes. The primary factors affecting the economics of any geothermal energy recovery process are the amount of heat present in the geothermal reservoir and rate of heat extraction, which strongly depend on the thermal properties of the reservoir rocks, which are functions of both temperature and pressure. The present paper aims to study the variation of thermal conductivity of five sandstone samples from the Germany Geothermal Field with various total (open and close) porosities of (6.8, 13.0, 15.44, 21.3, and 21.5%) with pressure up to 203 MPa, to overcome the existing lack of thermal conductivity data for the geothermal reservoir modeling. The improved steady-state heat-flow technique (contact method) was used to precisely (with an uncertainty of 4%) measure the thermal conductivity of the sandstone samples. Unlike previous studies, in the present work the effect of the contact thermal resistance on the measured values of thermal conductivity has been taken into account using a calibration procedure to increase the accuracy and reliability of the measured data. The results show that with the increase of the pressure at a fixed temperature of 293.15 K, the thermal conductivity of sandstone is linearly increasing with pressure from 0.52 to 1.73 GPa<sup>−1</sup> depending on sandstone structural and mineralogical composition, porosity, and other characteristics, which falls in the same range reported by other authors for rock samples from different geothermal fields. The derived values of the thermal conductivity pressure coefficient are crucial for geothermal studies in order to effectively use the geothermal resources of the region, and are useful for scientific applications such as the development and testing of the accuracy, reliability, and predictive capability of existing thermal models of geothermal reservoirs. Based on the present experimental results, statistical analysis (correlation analysis) was revealed between the measured thermal conductivity of sandstone samples and open and close porosities. The role of closed and open porosities on the pressure dependence of thermal conductivity and elastic moduli is discussed. For the first time, we experimentally observed the difference of the influence of the open and closed porosities on the thermal conductivity and elastic properties of sandstones. It was experimentally confirmed that the effect of closed porosity on the thermal conductivity of sandstones is significantly greater than that of open porosity by 15 to 20%. The obtained results show that it is of great importance to study the changes in the thermal properties of the sandstones under pressure at realistic reservoir conditions for geothermal studies.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"125 ","pages":"Article 103195"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-pressure thermal conductivity, speed of ultrasonic measurements and derived elastic modulus of sandstones with different porosity\",\"authors\":\"Eugene G. Pashuk ,&nbsp;Ada E. Ramazanova ,&nbsp;Ilmutdin M. Abdulagatov\",\"doi\":\"10.1016/j.geothermics.2024.103195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of pressure on thermal conductivity is an important for understanding the heat transfer processes in modeling applications in geothermal reservoirs and for optimization of the technology of geothermal energy extraction processes. The primary factors affecting the economics of any geothermal energy recovery process are the amount of heat present in the geothermal reservoir and rate of heat extraction, which strongly depend on the thermal properties of the reservoir rocks, which are functions of both temperature and pressure. The present paper aims to study the variation of thermal conductivity of five sandstone samples from the Germany Geothermal Field with various total (open and close) porosities of (6.8, 13.0, 15.44, 21.3, and 21.5%) with pressure up to 203 MPa, to overcome the existing lack of thermal conductivity data for the geothermal reservoir modeling. The improved steady-state heat-flow technique (contact method) was used to precisely (with an uncertainty of 4%) measure the thermal conductivity of the sandstone samples. Unlike previous studies, in the present work the effect of the contact thermal resistance on the measured values of thermal conductivity has been taken into account using a calibration procedure to increase the accuracy and reliability of the measured data. The results show that with the increase of the pressure at a fixed temperature of 293.15 K, the thermal conductivity of sandstone is linearly increasing with pressure from 0.52 to 1.73 GPa<sup>−1</sup> depending on sandstone structural and mineralogical composition, porosity, and other characteristics, which falls in the same range reported by other authors for rock samples from different geothermal fields. The derived values of the thermal conductivity pressure coefficient are crucial for geothermal studies in order to effectively use the geothermal resources of the region, and are useful for scientific applications such as the development and testing of the accuracy, reliability, and predictive capability of existing thermal models of geothermal reservoirs. Based on the present experimental results, statistical analysis (correlation analysis) was revealed between the measured thermal conductivity of sandstone samples and open and close porosities. The role of closed and open porosities on the pressure dependence of thermal conductivity and elastic moduli is discussed. For the first time, we experimentally observed the difference of the influence of the open and closed porosities on the thermal conductivity and elastic properties of sandstones. It was experimentally confirmed that the effect of closed porosity on the thermal conductivity of sandstones is significantly greater than that of open porosity by 15 to 20%. The obtained results show that it is of great importance to study the changes in the thermal properties of the sandstones under pressure at realistic reservoir conditions for geothermal studies.</div></div>\",\"PeriodicalId\":55095,\"journal\":{\"name\":\"Geothermics\",\"volume\":\"125 \",\"pages\":\"Article 103195\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geothermics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375650524002815\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650524002815","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

压力对热导率的影响对于了解地热储层建模应用中的传热过程以及优化地热能源提取工艺技术非常重要。影响任何地热能回收过程经济性的主要因素是地热储层中的热量和热量提取率,而这在很大程度上取决于储层岩石的热特性,而热特性是温度和压力的函数。本文旨在研究德国地热田五种砂岩样本的导热系数变化,这些样本的总孔隙度(开孔和闭孔)分别为(6.8%、13.0%、15.44%、21.3%和 21.5%),压力最高为 203 兆帕,以克服现有地热储层建模导热系数数据的不足。采用改进的稳态热流技术(接触法)精确测量了砂岩样本的导热系数(不确定度为 4%)。与以往的研究不同,本研究采用校准程序,考虑了接触热阻对热导率测量值的影响,以提高测量数据的准确性和可靠性。结果表明,在 293.15 K 的固定温度下,随着压力的增加,砂岩的热导率随压力在 0.52 至 1.73 GPa-1 之间线性增加,这取决于砂岩的结构和矿物成分、孔隙率和其他特征,与其他作者报告的不同地热田岩石样本的热导率范围相同。导热压力系数的推导值对地热研究至关重要,以便有效利用该地区的地热资源,同时也有助于科学应用,如开发和测试现有地热储层热模型的准确性、可靠性和预测能力。基于本实验结果,统计分析(相关分析)揭示了砂岩样本的实测热导率与开孔率和闭孔率之间的关系。讨论了封闭孔隙度和开放孔隙度对导热系数和弹性模量的压力依赖性的作用。我们首次在实验中观察到开放孔隙度和封闭孔隙度对砂岩导热系数和弹性模量影响的差异。实验证实,封闭孔隙度对砂岩导热性的影响明显大于开放孔隙度 15%至 20%。研究结果表明,在实际储层条件下研究砂岩在压力作用下的热特性变化对地热研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High-pressure thermal conductivity, speed of ultrasonic measurements and derived elastic modulus of sandstones with different porosity
The effect of pressure on thermal conductivity is an important for understanding the heat transfer processes in modeling applications in geothermal reservoirs and for optimization of the technology of geothermal energy extraction processes. The primary factors affecting the economics of any geothermal energy recovery process are the amount of heat present in the geothermal reservoir and rate of heat extraction, which strongly depend on the thermal properties of the reservoir rocks, which are functions of both temperature and pressure. The present paper aims to study the variation of thermal conductivity of five sandstone samples from the Germany Geothermal Field with various total (open and close) porosities of (6.8, 13.0, 15.44, 21.3, and 21.5%) with pressure up to 203 MPa, to overcome the existing lack of thermal conductivity data for the geothermal reservoir modeling. The improved steady-state heat-flow technique (contact method) was used to precisely (with an uncertainty of 4%) measure the thermal conductivity of the sandstone samples. Unlike previous studies, in the present work the effect of the contact thermal resistance on the measured values of thermal conductivity has been taken into account using a calibration procedure to increase the accuracy and reliability of the measured data. The results show that with the increase of the pressure at a fixed temperature of 293.15 K, the thermal conductivity of sandstone is linearly increasing with pressure from 0.52 to 1.73 GPa−1 depending on sandstone structural and mineralogical composition, porosity, and other characteristics, which falls in the same range reported by other authors for rock samples from different geothermal fields. The derived values of the thermal conductivity pressure coefficient are crucial for geothermal studies in order to effectively use the geothermal resources of the region, and are useful for scientific applications such as the development and testing of the accuracy, reliability, and predictive capability of existing thermal models of geothermal reservoirs. Based on the present experimental results, statistical analysis (correlation analysis) was revealed between the measured thermal conductivity of sandstone samples and open and close porosities. The role of closed and open porosities on the pressure dependence of thermal conductivity and elastic moduli is discussed. For the first time, we experimentally observed the difference of the influence of the open and closed porosities on the thermal conductivity and elastic properties of sandstones. It was experimentally confirmed that the effect of closed porosity on the thermal conductivity of sandstones is significantly greater than that of open porosity by 15 to 20%. The obtained results show that it is of great importance to study the changes in the thermal properties of the sandstones under pressure at realistic reservoir conditions for geothermal studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geothermics
Geothermics 工程技术-地球科学综合
CiteScore
7.70
自引率
15.40%
发文量
237
审稿时长
4.5 months
期刊介绍: Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field. It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.
期刊最新文献
Influence of transverse zones on the distribution of basement, tectonic configuration, and geothermal potential in the northern Perth basin, Australia Ground source heat pump systems in Central Asia: A case study from Dushanbe, Tajikistan Editorial Board Geothermal resources in the northern Harrat Rahat volcanic field, Saudi Arabia: A drilling and field data assessment Hydrochemical zonation and geochemical processes of geothermal water in Beijing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1