基于迁移学习和无监督学习的结构地震响应实时预测框架

IF 5.6 1区 工程技术 Q1 ENGINEERING, CIVIL Engineering Structures Pub Date : 2024-11-10 DOI:10.1016/j.engstruct.2024.119227
Hongrak Pak, Stephanie German Paal
{"title":"基于迁移学习和无监督学习的结构地震响应实时预测框架","authors":"Hongrak Pak,&nbsp;Stephanie German Paal","doi":"10.1016/j.engstruct.2024.119227","DOIUrl":null,"url":null,"abstract":"<div><div>Conventional data-driven methods for predicting the seismic response of structures often require extensive data and computational resources. To address these challenges, a novel deep learning framework that can efficiently and accurately predict the structural seismic responses is proposed. The proposed framework overcomes the limitations of the conventional data-driven methods, by utilizing transfer learning based on the most relevant knowledge determined via the unsupervised learning technique. The framework leverages the seismic information history database to identify the most similar previous earthquake, and subsequently transfers the corresponding knowledge from the Structural Seismic Response network (SSR net) to predict structural responses caused by a new earthquake. This innovative method significantly reduces the need for extensive data collection and provides efficient predictions. Case studies demonstrate the framework’s ability to predict seismic structural responses without extensive training or data collection. The framework can reliably capture the complex nonlinear dynamics of structures under seismic loads and offer significant potential for advancing seismic fragility analyses and reliability assessments. Future research will focus on expanding the framework’s applicability to various structural types and further refining its prediction capabilities.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"323 ","pages":"Article 119227"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A real-time structural seismic response prediction framework based on transfer learning and unsupervised learning\",\"authors\":\"Hongrak Pak,&nbsp;Stephanie German Paal\",\"doi\":\"10.1016/j.engstruct.2024.119227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Conventional data-driven methods for predicting the seismic response of structures often require extensive data and computational resources. To address these challenges, a novel deep learning framework that can efficiently and accurately predict the structural seismic responses is proposed. The proposed framework overcomes the limitations of the conventional data-driven methods, by utilizing transfer learning based on the most relevant knowledge determined via the unsupervised learning technique. The framework leverages the seismic information history database to identify the most similar previous earthquake, and subsequently transfers the corresponding knowledge from the Structural Seismic Response network (SSR net) to predict structural responses caused by a new earthquake. This innovative method significantly reduces the need for extensive data collection and provides efficient predictions. Case studies demonstrate the framework’s ability to predict seismic structural responses without extensive training or data collection. The framework can reliably capture the complex nonlinear dynamics of structures under seismic loads and offer significant potential for advancing seismic fragility analyses and reliability assessments. Future research will focus on expanding the framework’s applicability to various structural types and further refining its prediction capabilities.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"323 \",\"pages\":\"Article 119227\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141029624017899\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624017899","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

预测结构地震响应的传统数据驱动方法通常需要大量数据和计算资源。为了应对这些挑战,我们提出了一种新颖的深度学习框架,可以高效、准确地预测结构地震响应。通过利用基于无监督学习技术确定的最相关知识的迁移学习,所提出的框架克服了传统数据驱动方法的局限性。该框架利用地震信息历史数据库来识别最相似的前次地震,然后从结构地震响应网络(SSR 网络)中转移相应的知识来预测新地震引起的结构响应。这种创新方法大大减少了对大量数据收集的需求,并提供了高效的预测。案例研究表明,该框架无需大量训练或数据收集就能预测地震结构响应。该框架能够可靠地捕捉结构在地震荷载作用下的复杂非线性动态,为推进地震脆性分析和可靠性评估提供了巨大的潜力。未来的研究重点将是扩大该框架对各种结构类型的适用性,并进一步完善其预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A real-time structural seismic response prediction framework based on transfer learning and unsupervised learning
Conventional data-driven methods for predicting the seismic response of structures often require extensive data and computational resources. To address these challenges, a novel deep learning framework that can efficiently and accurately predict the structural seismic responses is proposed. The proposed framework overcomes the limitations of the conventional data-driven methods, by utilizing transfer learning based on the most relevant knowledge determined via the unsupervised learning technique. The framework leverages the seismic information history database to identify the most similar previous earthquake, and subsequently transfers the corresponding knowledge from the Structural Seismic Response network (SSR net) to predict structural responses caused by a new earthquake. This innovative method significantly reduces the need for extensive data collection and provides efficient predictions. Case studies demonstrate the framework’s ability to predict seismic structural responses without extensive training or data collection. The framework can reliably capture the complex nonlinear dynamics of structures under seismic loads and offer significant potential for advancing seismic fragility analyses and reliability assessments. Future research will focus on expanding the framework’s applicability to various structural types and further refining its prediction capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Structures
Engineering Structures 工程技术-工程:土木
CiteScore
10.20
自引率
14.50%
发文量
1385
审稿时长
67 days
期刊介绍: Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed. The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering. Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels. Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.
期刊最新文献
Integrated testing and modelling of substructures using full-field imaging and data fusion Extension of the Continuous Strength Method to the design of steel I-sections in fire A direct energy-based design method for damping control reinforced concrete structure: methodology and application Explainable artificial intelligence framework for plastic hinge length prediction of flexural-dominated steel-reinforced concrete composite shear walls Seismic resilience of deteriorating bridges under changing climatic conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1