Chengtao Wang , Feng Cai , Hongshuai Qi , Shaohua Zhao , Gen Liu , Yanyu He , Huiquan Lu , Yi Sun , Ting Zhang
{"title":"山区河流三角洲及邻近海岸对泥沙排放变化的响应模式:中国岷江案例研究","authors":"Chengtao Wang , Feng Cai , Hongshuai Qi , Shaohua Zhao , Gen Liu , Yanyu He , Huiquan Lu , Yi Sun , Ting Zhang","doi":"10.1016/j.ejrh.2024.102051","DOIUrl":null,"url":null,"abstract":"<div><h3>Study region</h3><div>The Minjiang River, located on the western side of the Taiwan Strait of East Asia, serves as a typical mountain river estuary system.</div></div><div><h3>Study focus</h3><div>This research investigates the impact of reduced sediment discharge on the geomorphological changes in the Minjiang River estuary delta and its adjacent coasts. By integrating 45 years of shoreline data and nautical chart bathymetry, the study quantitatively delineates tempo-spatial change patterns and reveals the rapid response mechanisms to sediment discharge decrease.</div></div><div><h3>New hydrological insights for the region</h3><div>The study demonstrates that the sandy shoreline near the Minjiang River estuary exhibits distinct tempo-spatial evolution patterns primarily due to decreased sediment discharge. The estuarine transition zone shows greater coastal resilience, with shoals providing essential sediment sources for development, while the shoreline south of the transition zone experiences progressively delayed erosion. The Minjiang River delta reacts swiftly to decreased sediment discharge, with a response time of significantly under ten years. Despite the temporary influence of extreme weather events such as typhoons on erosion states, continuous sediment discharge decrease remains the dominant factor. These insights highlight the heightened sensitivity and rapid adaptability of mountain rivers to environmental shifts, providing significant implications for understanding the repercussions of human activities on estuarine geomorphological alterations.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 102051"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Response patterns of mountain river deltas and adjacent coasts to the changes in sediment discharge: A case study of Minjiang River, China\",\"authors\":\"Chengtao Wang , Feng Cai , Hongshuai Qi , Shaohua Zhao , Gen Liu , Yanyu He , Huiquan Lu , Yi Sun , Ting Zhang\",\"doi\":\"10.1016/j.ejrh.2024.102051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Study region</h3><div>The Minjiang River, located on the western side of the Taiwan Strait of East Asia, serves as a typical mountain river estuary system.</div></div><div><h3>Study focus</h3><div>This research investigates the impact of reduced sediment discharge on the geomorphological changes in the Minjiang River estuary delta and its adjacent coasts. By integrating 45 years of shoreline data and nautical chart bathymetry, the study quantitatively delineates tempo-spatial change patterns and reveals the rapid response mechanisms to sediment discharge decrease.</div></div><div><h3>New hydrological insights for the region</h3><div>The study demonstrates that the sandy shoreline near the Minjiang River estuary exhibits distinct tempo-spatial evolution patterns primarily due to decreased sediment discharge. The estuarine transition zone shows greater coastal resilience, with shoals providing essential sediment sources for development, while the shoreline south of the transition zone experiences progressively delayed erosion. The Minjiang River delta reacts swiftly to decreased sediment discharge, with a response time of significantly under ten years. Despite the temporary influence of extreme weather events such as typhoons on erosion states, continuous sediment discharge decrease remains the dominant factor. These insights highlight the heightened sensitivity and rapid adaptability of mountain rivers to environmental shifts, providing significant implications for understanding the repercussions of human activities on estuarine geomorphological alterations.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"56 \",\"pages\":\"Article 102051\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824004002\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824004002","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Response patterns of mountain river deltas and adjacent coasts to the changes in sediment discharge: A case study of Minjiang River, China
Study region
The Minjiang River, located on the western side of the Taiwan Strait of East Asia, serves as a typical mountain river estuary system.
Study focus
This research investigates the impact of reduced sediment discharge on the geomorphological changes in the Minjiang River estuary delta and its adjacent coasts. By integrating 45 years of shoreline data and nautical chart bathymetry, the study quantitatively delineates tempo-spatial change patterns and reveals the rapid response mechanisms to sediment discharge decrease.
New hydrological insights for the region
The study demonstrates that the sandy shoreline near the Minjiang River estuary exhibits distinct tempo-spatial evolution patterns primarily due to decreased sediment discharge. The estuarine transition zone shows greater coastal resilience, with shoals providing essential sediment sources for development, while the shoreline south of the transition zone experiences progressively delayed erosion. The Minjiang River delta reacts swiftly to decreased sediment discharge, with a response time of significantly under ten years. Despite the temporary influence of extreme weather events such as typhoons on erosion states, continuous sediment discharge decrease remains the dominant factor. These insights highlight the heightened sensitivity and rapid adaptability of mountain rivers to environmental shifts, providing significant implications for understanding the repercussions of human activities on estuarine geomorphological alterations.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.