{"title":"QMol-grid:用于原子和分子系统量子力学模拟的 MATLAB 软件包","authors":"François Mauger , Cristel Chandre","doi":"10.1016/j.softx.2024.101968","DOIUrl":null,"url":null,"abstract":"<div><div>The <span>QMol-grid</span> package provides a suite of routines for performing quantum-mechanical simulations in atomic and molecular systems, currently implemented in one spatial dimension. It supports ground- and excited-state calculations for the Schrödinger equation, density-functional theory, and Hartree–Fock levels of theory as well as propagators for field-free and field-driven time-dependent Schrödinger equation (TDSE) and real-time time-dependent density-functional theory (TDDFT), using symplectic-split schemes. The package is written using MATLAB’s object-oriented features and handle classes. It is designed to facilitate access to the wave function(s) (TDSE) and the Kohn–Sham orbitals (TDDFT) within MATLAB’s environment.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"28 ","pages":"Article 101968"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"QMol-grid : A MATLAB package for quantum-mechanical simulations in atomic and molecular systems\",\"authors\":\"François Mauger , Cristel Chandre\",\"doi\":\"10.1016/j.softx.2024.101968\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span>QMol-grid</span> package provides a suite of routines for performing quantum-mechanical simulations in atomic and molecular systems, currently implemented in one spatial dimension. It supports ground- and excited-state calculations for the Schrödinger equation, density-functional theory, and Hartree–Fock levels of theory as well as propagators for field-free and field-driven time-dependent Schrödinger equation (TDSE) and real-time time-dependent density-functional theory (TDDFT), using symplectic-split schemes. The package is written using MATLAB’s object-oriented features and handle classes. It is designed to facilitate access to the wave function(s) (TDSE) and the Kohn–Sham orbitals (TDDFT) within MATLAB’s environment.</div></div>\",\"PeriodicalId\":21905,\"journal\":{\"name\":\"SoftwareX\",\"volume\":\"28 \",\"pages\":\"Article 101968\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SoftwareX\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352711024003388\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003388","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
QMol-grid : A MATLAB package for quantum-mechanical simulations in atomic and molecular systems
The QMol-grid package provides a suite of routines for performing quantum-mechanical simulations in atomic and molecular systems, currently implemented in one spatial dimension. It supports ground- and excited-state calculations for the Schrödinger equation, density-functional theory, and Hartree–Fock levels of theory as well as propagators for field-free and field-driven time-dependent Schrödinger equation (TDSE) and real-time time-dependent density-functional theory (TDDFT), using symplectic-split schemes. The package is written using MATLAB’s object-oriented features and handle classes. It is designed to facilitate access to the wave function(s) (TDSE) and the Kohn–Sham orbitals (TDDFT) within MATLAB’s environment.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.