Manon Trottet , Hanspeter Liniger , Daniel Hunkeler , Philip Brunner
{"title":"肯尼亚山东北侧地下水概念模型","authors":"Manon Trottet , Hanspeter Liniger , Daniel Hunkeler , Philip Brunner","doi":"10.1016/j.ejrh.2024.101989","DOIUrl":null,"url":null,"abstract":"<div><div>Despite serious concerns over declining river flows and prolonged dry spells in the north-eastern region of Mount Kenya and the Ewaso Ng’iro River watershed many aspects of the groundwater system remain unexplored. In particular, the recharge-discharge dynamics of the Ewaso Ng’iro River have not been studied, and no conceptual groundwater model currently links the recharge areas in the high-elevation humid regions to the drier lowlands. This study aims to address this significant knowledge gap by assessing the recharge-discharge dynamics of the Ewaso Ng’iro River and identifying the relevant groundwater subsystems and the main flow paths within the various lava layers constituting the aquifer system. Hydrochemical and stable isotope analyses revealed three distinct subsystems with slightly different chemistries and different recharge zones, all of recent meteoric origin. Groundwater from Mt. Kenya is of the HCO<sub>3</sub>-Na-Mg-Ca type with no dominant cations, whereas groundwater from the Nyambene Range, the other surrounding volcanic hills in the area, is of the HCO<sub>3</sub>-Na type. Groundwater in the third subsystem in between is of the HCO<sub>3</sub>-Mg type and is confined or semi-confined. In this area, carbon-13 analysis showed a strong influence of mantle-derived CO<sub>2</sub> on the groundwater chemistry (very high electrical conductivity and left-shifted oxygen-18 ratios). Finally, major ions and stable isotopes (ẟ<sup>18</sup>O and ẟ<sup>2</sup>H) confirmed that during the dry season, the river is entirely groundwater-fed, with the Mt. Kenya subsystem contributing half of the maximum river flow rate of 800 l/s.</div></div>","PeriodicalId":48620,"journal":{"name":"Journal of Hydrology-Regional Studies","volume":"56 ","pages":"Article 101989"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual groundwater model of the north-eastern flanks of Mount Kenya\",\"authors\":\"Manon Trottet , Hanspeter Liniger , Daniel Hunkeler , Philip Brunner\",\"doi\":\"10.1016/j.ejrh.2024.101989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite serious concerns over declining river flows and prolonged dry spells in the north-eastern region of Mount Kenya and the Ewaso Ng’iro River watershed many aspects of the groundwater system remain unexplored. In particular, the recharge-discharge dynamics of the Ewaso Ng’iro River have not been studied, and no conceptual groundwater model currently links the recharge areas in the high-elevation humid regions to the drier lowlands. This study aims to address this significant knowledge gap by assessing the recharge-discharge dynamics of the Ewaso Ng’iro River and identifying the relevant groundwater subsystems and the main flow paths within the various lava layers constituting the aquifer system. Hydrochemical and stable isotope analyses revealed three distinct subsystems with slightly different chemistries and different recharge zones, all of recent meteoric origin. Groundwater from Mt. Kenya is of the HCO<sub>3</sub>-Na-Mg-Ca type with no dominant cations, whereas groundwater from the Nyambene Range, the other surrounding volcanic hills in the area, is of the HCO<sub>3</sub>-Na type. Groundwater in the third subsystem in between is of the HCO<sub>3</sub>-Mg type and is confined or semi-confined. In this area, carbon-13 analysis showed a strong influence of mantle-derived CO<sub>2</sub> on the groundwater chemistry (very high electrical conductivity and left-shifted oxygen-18 ratios). Finally, major ions and stable isotopes (ẟ<sup>18</sup>O and ẟ<sup>2</sup>H) confirmed that during the dry season, the river is entirely groundwater-fed, with the Mt. Kenya subsystem contributing half of the maximum river flow rate of 800 l/s.</div></div>\",\"PeriodicalId\":48620,\"journal\":{\"name\":\"Journal of Hydrology-Regional Studies\",\"volume\":\"56 \",\"pages\":\"Article 101989\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrology-Regional Studies\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214581824003380\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology-Regional Studies","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214581824003380","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Conceptual groundwater model of the north-eastern flanks of Mount Kenya
Despite serious concerns over declining river flows and prolonged dry spells in the north-eastern region of Mount Kenya and the Ewaso Ng’iro River watershed many aspects of the groundwater system remain unexplored. In particular, the recharge-discharge dynamics of the Ewaso Ng’iro River have not been studied, and no conceptual groundwater model currently links the recharge areas in the high-elevation humid regions to the drier lowlands. This study aims to address this significant knowledge gap by assessing the recharge-discharge dynamics of the Ewaso Ng’iro River and identifying the relevant groundwater subsystems and the main flow paths within the various lava layers constituting the aquifer system. Hydrochemical and stable isotope analyses revealed three distinct subsystems with slightly different chemistries and different recharge zones, all of recent meteoric origin. Groundwater from Mt. Kenya is of the HCO3-Na-Mg-Ca type with no dominant cations, whereas groundwater from the Nyambene Range, the other surrounding volcanic hills in the area, is of the HCO3-Na type. Groundwater in the third subsystem in between is of the HCO3-Mg type and is confined or semi-confined. In this area, carbon-13 analysis showed a strong influence of mantle-derived CO2 on the groundwater chemistry (very high electrical conductivity and left-shifted oxygen-18 ratios). Finally, major ions and stable isotopes (ẟ18O and ẟ2H) confirmed that during the dry season, the river is entirely groundwater-fed, with the Mt. Kenya subsystem contributing half of the maximum river flow rate of 800 l/s.
期刊介绍:
Journal of Hydrology: Regional Studies publishes original research papers enhancing the science of hydrology and aiming at region-specific problems, past and future conditions, analysis, review and solutions. The journal particularly welcomes research papers that deliver new insights into region-specific hydrological processes and responses to changing conditions, as well as contributions that incorporate interdisciplinarity and translational science.