Eduardo Nuñez , Ramón Mata , Marcelo Sanhueza , Matías Hernández , Nelson Maureira , Néstor Guerrero
{"title":"梁对直角螺栓连接的循环行为:智利钢制仓储架的实验研究","authors":"Eduardo Nuñez , Ramón Mata , Marcelo Sanhueza , Matías Hernández , Nelson Maureira , Néstor Guerrero","doi":"10.1016/j.engstruct.2024.119310","DOIUrl":null,"url":null,"abstract":"<div><div>In this research an experimental study to assess the cyclic behavior of bolted moment connection in racks structures is performed. The effect of bolt pretension in the response is evaluated. Sixteen full-scale steel rack joint configurations were subjected to cyclic load according to the protocol established in AISC Seismic provisions. The cyclic performance was evaluated in terms of hysteretic response, failure mechanism, energy dissipation, stiffness, and rotation on the components. Two different configurations were studied. The results showed that the steel rack connections using a 70 % of bolt pretension can accommodate a 0.8 My at 0.04 rad of drift angle, while the joints without bolt pretension reached values below 0.7 My at 4 % of rotation. The failure mechanism was controlled by weld fracture at 4 % of the rotation. A high dispersion in the energy dissipation pattern was obtained and a drop in energy dissipation of up to 4 times in all specimens tested for a 4 % rotation was developed. This phenomenon is due to the welding rupture between the beam and the L-connector. A degradation of the secant stiffness reached up to 60 % for 2 % rotation. Finally, the most important effect of bolt pretension on the cyclic response of steel rack connections was achieved in the increase of flexural resistance and rotation developed.</div></div>","PeriodicalId":11763,"journal":{"name":"Engineering Structures","volume":"323 ","pages":"Article 119310"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cyclic behavior of beam-to-upright bolted connections: Experimental study of Chilean steel storage racks\",\"authors\":\"Eduardo Nuñez , Ramón Mata , Marcelo Sanhueza , Matías Hernández , Nelson Maureira , Néstor Guerrero\",\"doi\":\"10.1016/j.engstruct.2024.119310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this research an experimental study to assess the cyclic behavior of bolted moment connection in racks structures is performed. The effect of bolt pretension in the response is evaluated. Sixteen full-scale steel rack joint configurations were subjected to cyclic load according to the protocol established in AISC Seismic provisions. The cyclic performance was evaluated in terms of hysteretic response, failure mechanism, energy dissipation, stiffness, and rotation on the components. Two different configurations were studied. The results showed that the steel rack connections using a 70 % of bolt pretension can accommodate a 0.8 My at 0.04 rad of drift angle, while the joints without bolt pretension reached values below 0.7 My at 4 % of rotation. The failure mechanism was controlled by weld fracture at 4 % of the rotation. A high dispersion in the energy dissipation pattern was obtained and a drop in energy dissipation of up to 4 times in all specimens tested for a 4 % rotation was developed. This phenomenon is due to the welding rupture between the beam and the L-connector. A degradation of the secant stiffness reached up to 60 % for 2 % rotation. Finally, the most important effect of bolt pretension on the cyclic response of steel rack connections was achieved in the increase of flexural resistance and rotation developed.</div></div>\",\"PeriodicalId\":11763,\"journal\":{\"name\":\"Engineering Structures\",\"volume\":\"323 \",\"pages\":\"Article 119310\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141029624018728\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141029624018728","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Cyclic behavior of beam-to-upright bolted connections: Experimental study of Chilean steel storage racks
In this research an experimental study to assess the cyclic behavior of bolted moment connection in racks structures is performed. The effect of bolt pretension in the response is evaluated. Sixteen full-scale steel rack joint configurations were subjected to cyclic load according to the protocol established in AISC Seismic provisions. The cyclic performance was evaluated in terms of hysteretic response, failure mechanism, energy dissipation, stiffness, and rotation on the components. Two different configurations were studied. The results showed that the steel rack connections using a 70 % of bolt pretension can accommodate a 0.8 My at 0.04 rad of drift angle, while the joints without bolt pretension reached values below 0.7 My at 4 % of rotation. The failure mechanism was controlled by weld fracture at 4 % of the rotation. A high dispersion in the energy dissipation pattern was obtained and a drop in energy dissipation of up to 4 times in all specimens tested for a 4 % rotation was developed. This phenomenon is due to the welding rupture between the beam and the L-connector. A degradation of the secant stiffness reached up to 60 % for 2 % rotation. Finally, the most important effect of bolt pretension on the cyclic response of steel rack connections was achieved in the increase of flexural resistance and rotation developed.
期刊介绍:
Engineering Structures provides a forum for a broad blend of scientific and technical papers to reflect the evolving needs of the structural engineering and structural mechanics communities. Particularly welcome are contributions dealing with applications of structural engineering and mechanics principles in all areas of technology. The journal aspires to a broad and integrated coverage of the effects of dynamic loadings and of the modelling techniques whereby the structural response to these loadings may be computed.
The scope of Engineering Structures encompasses, but is not restricted to, the following areas: infrastructure engineering; earthquake engineering; structure-fluid-soil interaction; wind engineering; fire engineering; blast engineering; structural reliability/stability; life assessment/integrity; structural health monitoring; multi-hazard engineering; structural dynamics; optimization; expert systems; experimental modelling; performance-based design; multiscale analysis; value engineering.
Topics of interest include: tall buildings; innovative structures; environmentally responsive structures; bridges; stadiums; commercial and public buildings; transmission towers; television and telecommunication masts; foldable structures; cooling towers; plates and shells; suspension structures; protective structures; smart structures; nuclear reactors; dams; pressure vessels; pipelines; tunnels.
Engineering Structures also publishes review articles, short communications and discussions, book reviews, and a diary on international events related to any aspect of structural engineering.