低温放热对先进柔性燃料汽油-乙醇发动机非拉伸层流燃烧速度的影响

IF 6.1 2区 工程技术 Q2 ENERGY & FUELS Applied Thermal Engineering Pub Date : 2024-11-06 DOI:10.1016/j.applthermaleng.2024.124826
Kohei Isobe , Kei Yoshimura , Takuma Kobayashi , Ratnak Sok , Jin Kusaka
{"title":"低温放热对先进柔性燃料汽油-乙醇发动机非拉伸层流燃烧速度的影响","authors":"Kohei Isobe ,&nbsp;Kei Yoshimura ,&nbsp;Takuma Kobayashi ,&nbsp;Ratnak Sok ,&nbsp;Jin Kusaka","doi":"10.1016/j.applthermaleng.2024.124826","DOIUrl":null,"url":null,"abstract":"<div><div>Improving brake thermal efficiency (BTE) of flex-fuel engines can contribute to decarbonizing conventional and hybridized vehicles running on spark-ignited (SI) engines. High compression ratio (CR) and burning velocity under exhaust gas recirculation (EGR) conditions can improve the engine BTE. Ethanol fuel, which has been attracting increasing attention recently, can improve brake thermal efficiency due to its high-octane number and fast laminar burning velocity (LBV). With higher CRs, low-temperature heat release (LTHR) occurs in the unburned mixture, which affects the compositions, oxidation, and in-cylinder temperature. Such thermodynamic changes on unstretched LBV have not been thoroughly investigated, especially in production-intent next-generation flex-fuel engines. This study aims to clarify the LTHR impacts on LBV under EGR conditions using ethanol-blended gasoline surrogate fuel SI engines. The testbed used a single-cylinder SI engine fueled by E0 (gasoline surrogate), E20 (20 % ethanol + 80 % E0 by volume), E40, E60, E85, and E100. Detailed chemical reaction calculations were conducted using the boundary conditions obtained from production-intent, strong-tumble flow, and flex-fuel engine experiments. This work predicted LTHR in an unburned mixture using a zero-dimensional detailed chemical reaction calculation. LBV is predicted by a 1D kinetic laminar flame code. As a result, LTHR proceeds before the main combustion. The results show that the temperature increase associated with LTHR increases the burning velocity, while the partial oxidants decrease the burning velocity. Moreover, this work examined higher CRs using detailed chemical reaction calculations, and the results show that fuels with higher ethanol blending ratios can increase LBV in the late combustion phase.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"258 ","pages":"Article 124826"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of low-temperature heat release on unstretched laminar burning velocity in advanced flex-fuel gasoline-ethanol engines\",\"authors\":\"Kohei Isobe ,&nbsp;Kei Yoshimura ,&nbsp;Takuma Kobayashi ,&nbsp;Ratnak Sok ,&nbsp;Jin Kusaka\",\"doi\":\"10.1016/j.applthermaleng.2024.124826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Improving brake thermal efficiency (BTE) of flex-fuel engines can contribute to decarbonizing conventional and hybridized vehicles running on spark-ignited (SI) engines. High compression ratio (CR) and burning velocity under exhaust gas recirculation (EGR) conditions can improve the engine BTE. Ethanol fuel, which has been attracting increasing attention recently, can improve brake thermal efficiency due to its high-octane number and fast laminar burning velocity (LBV). With higher CRs, low-temperature heat release (LTHR) occurs in the unburned mixture, which affects the compositions, oxidation, and in-cylinder temperature. Such thermodynamic changes on unstretched LBV have not been thoroughly investigated, especially in production-intent next-generation flex-fuel engines. This study aims to clarify the LTHR impacts on LBV under EGR conditions using ethanol-blended gasoline surrogate fuel SI engines. The testbed used a single-cylinder SI engine fueled by E0 (gasoline surrogate), E20 (20 % ethanol + 80 % E0 by volume), E40, E60, E85, and E100. Detailed chemical reaction calculations were conducted using the boundary conditions obtained from production-intent, strong-tumble flow, and flex-fuel engine experiments. This work predicted LTHR in an unburned mixture using a zero-dimensional detailed chemical reaction calculation. LBV is predicted by a 1D kinetic laminar flame code. As a result, LTHR proceeds before the main combustion. The results show that the temperature increase associated with LTHR increases the burning velocity, while the partial oxidants decrease the burning velocity. Moreover, this work examined higher CRs using detailed chemical reaction calculations, and the results show that fuels with higher ethanol blending ratios can increase LBV in the late combustion phase.</div></div>\",\"PeriodicalId\":8201,\"journal\":{\"name\":\"Applied Thermal Engineering\",\"volume\":\"258 \",\"pages\":\"Article 124826\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Thermal Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359431124024943\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124024943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

提高柔性燃料发动机的制动热效率(BTE)有助于使使用火花点火(SI)发动机的传统汽车和混合动力汽车脱碳。废气再循环(EGR)条件下的高压缩比(CR)和燃烧速度可提高发动机的制动热效率(BTE)。最近日益受到关注的乙醇燃料,因其辛烷值高和层燃速度快(LBV),可提高制动热效率。随着辛烷值的升高,未燃烧混合物中会出现低温放热(LTHR),从而影响成分、氧化和缸内温度。对未拉伸 LBV 的这种热力学变化尚未进行深入研究,特别是在具有生产意图的下一代柔性燃料发动机中。本研究旨在利用乙醇混合汽油代用燃料 SI 发动机阐明 EGR 条件下 LTHR 对 LBV 的影响。试验台使用了一台单缸 SI 发动机,其燃料包括 E0(代用汽油)、E20(20 % 乙醇 + 80 % E0(体积比))、E40、E60、E85 和 E100。利用从生产意图、强翻滚流和柔性燃料发动机实验中获得的边界条件进行了详细的化学反应计算。这项工作采用零维详细化学反应计算方法预测了未燃烧混合物中的 LTHR。LBV 由一维动力学层流火焰代码预测。因此,LTHR 在主燃烧之前进行。结果表明,与 LTHR 相关的温度升高会提高燃烧速度,而部分氧化剂会降低燃烧速度。此外,这项工作还利用详细的化学反应计算对更高的 CR 进行了研究,结果表明,乙醇混合比更高的燃料可以增加燃烧后期的 LBV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impacts of low-temperature heat release on unstretched laminar burning velocity in advanced flex-fuel gasoline-ethanol engines
Improving brake thermal efficiency (BTE) of flex-fuel engines can contribute to decarbonizing conventional and hybridized vehicles running on spark-ignited (SI) engines. High compression ratio (CR) and burning velocity under exhaust gas recirculation (EGR) conditions can improve the engine BTE. Ethanol fuel, which has been attracting increasing attention recently, can improve brake thermal efficiency due to its high-octane number and fast laminar burning velocity (LBV). With higher CRs, low-temperature heat release (LTHR) occurs in the unburned mixture, which affects the compositions, oxidation, and in-cylinder temperature. Such thermodynamic changes on unstretched LBV have not been thoroughly investigated, especially in production-intent next-generation flex-fuel engines. This study aims to clarify the LTHR impacts on LBV under EGR conditions using ethanol-blended gasoline surrogate fuel SI engines. The testbed used a single-cylinder SI engine fueled by E0 (gasoline surrogate), E20 (20 % ethanol + 80 % E0 by volume), E40, E60, E85, and E100. Detailed chemical reaction calculations were conducted using the boundary conditions obtained from production-intent, strong-tumble flow, and flex-fuel engine experiments. This work predicted LTHR in an unburned mixture using a zero-dimensional detailed chemical reaction calculation. LBV is predicted by a 1D kinetic laminar flame code. As a result, LTHR proceeds before the main combustion. The results show that the temperature increase associated with LTHR increases the burning velocity, while the partial oxidants decrease the burning velocity. Moreover, this work examined higher CRs using detailed chemical reaction calculations, and the results show that fuels with higher ethanol blending ratios can increase LBV in the late combustion phase.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Thermal Engineering
Applied Thermal Engineering 工程技术-工程:机械
CiteScore
11.30
自引率
15.60%
发文量
1474
审稿时长
57 days
期刊介绍: Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application. The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.
期刊最新文献
Editorial Board Numerical assessment on a hybrid axial throughflow cooling scheme applied to the thermal management of bump-type gas foil bearings Editorial Board Experimental investigation of an off-grid photovoltaic heat pump collection system with heat collecting as a core Battery energy storage systems for ancillary services in renewable energy communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1