{"title":"中国海洋渔业生产碳排放与碳汇驱动因素分解","authors":"Jiekun Song, Zhicheng Liu, Kaiyuan Huang, Xueli Leng, Huisheng Xiao","doi":"10.1016/j.ocecoaman.2024.107476","DOIUrl":null,"url":null,"abstract":"<div><div>Marine fishery production has the dual properties of \"carbon source\" and \"carbon sink\", and is an important means to achieve carbon neutrality. This study combines a two-layer meta-frontier production theoretical decomposition analysis (PDA) model with the logarithmic mean divisia index (LMDI) model to analyze the driving factors of carbon source change in Marine fishery production in China's coastal provinces. The LMDI model is applied to analyze the effects of employed population, per capita output value, input area per unit of output value, output per unit area and output structure on carbon sinks in each province. The results indicate that: (1) The potential energy intensity and technological progress are the driving factors of carbon emission reduction in most provinces, while output value and energy consumption structure are the important hindering factors. Each province should improve the overall efficiency of energy utilization, promote technological progress, and optimize the energy consumption structure to reduce carbon emissions. (2) The non-stationarity of scale efficiency of energy utilization promoted carbon emission reduction recently. All provinces, especially those with scale efficiency less than 1, should pursue the optimal allocation efficiency of input resources and maintain the coordination of scale development. (3) The effects reflecting the inter-regional pure technical efficiency imbalance and the impact of inter-regional scale efficiency are mostly 0. The provinces with positive effects should catch up with the advanced provinces and seek the best technology and management level and the optimal input-output scale. (4) The effects reflecting the imbalance of pure technological efficiency and the ineffectiveness of scale efficiency within the region are almost 0. Each province should continue to maintain a high level of technology and management, as well as a high efficiency in resource allocation, to ensure the efficient use of input resources and their optimal scale. (5) Per capita output value and output per unit area are the main driving factors of carbon sinks. In addition to leveraging the positive effects of these two factors, each province should focus on optimizing product structure and increasing the employed population to increase carbon sinks. (6) Regional integrated and coordinated management should be implemented. According to the important factors affecting the change of carbon emissions and carbon sinks in each region, the provinces in the region should be coordinated to take targeted measures.</div></div>","PeriodicalId":54698,"journal":{"name":"Ocean & Coastal Management","volume":"259 ","pages":"Article 107476"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decomposition of driving factors of carbon emissions and carbon sinks from marine fishery production in China\",\"authors\":\"Jiekun Song, Zhicheng Liu, Kaiyuan Huang, Xueli Leng, Huisheng Xiao\",\"doi\":\"10.1016/j.ocecoaman.2024.107476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Marine fishery production has the dual properties of \\\"carbon source\\\" and \\\"carbon sink\\\", and is an important means to achieve carbon neutrality. This study combines a two-layer meta-frontier production theoretical decomposition analysis (PDA) model with the logarithmic mean divisia index (LMDI) model to analyze the driving factors of carbon source change in Marine fishery production in China's coastal provinces. The LMDI model is applied to analyze the effects of employed population, per capita output value, input area per unit of output value, output per unit area and output structure on carbon sinks in each province. The results indicate that: (1) The potential energy intensity and technological progress are the driving factors of carbon emission reduction in most provinces, while output value and energy consumption structure are the important hindering factors. Each province should improve the overall efficiency of energy utilization, promote technological progress, and optimize the energy consumption structure to reduce carbon emissions. (2) The non-stationarity of scale efficiency of energy utilization promoted carbon emission reduction recently. All provinces, especially those with scale efficiency less than 1, should pursue the optimal allocation efficiency of input resources and maintain the coordination of scale development. (3) The effects reflecting the inter-regional pure technical efficiency imbalance and the impact of inter-regional scale efficiency are mostly 0. The provinces with positive effects should catch up with the advanced provinces and seek the best technology and management level and the optimal input-output scale. (4) The effects reflecting the imbalance of pure technological efficiency and the ineffectiveness of scale efficiency within the region are almost 0. Each province should continue to maintain a high level of technology and management, as well as a high efficiency in resource allocation, to ensure the efficient use of input resources and their optimal scale. (5) Per capita output value and output per unit area are the main driving factors of carbon sinks. In addition to leveraging the positive effects of these two factors, each province should focus on optimizing product structure and increasing the employed population to increase carbon sinks. (6) Regional integrated and coordinated management should be implemented. According to the important factors affecting the change of carbon emissions and carbon sinks in each region, the provinces in the region should be coordinated to take targeted measures.</div></div>\",\"PeriodicalId\":54698,\"journal\":{\"name\":\"Ocean & Coastal Management\",\"volume\":\"259 \",\"pages\":\"Article 107476\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean & Coastal Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0964569124004617\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean & Coastal Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964569124004617","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Decomposition of driving factors of carbon emissions and carbon sinks from marine fishery production in China
Marine fishery production has the dual properties of "carbon source" and "carbon sink", and is an important means to achieve carbon neutrality. This study combines a two-layer meta-frontier production theoretical decomposition analysis (PDA) model with the logarithmic mean divisia index (LMDI) model to analyze the driving factors of carbon source change in Marine fishery production in China's coastal provinces. The LMDI model is applied to analyze the effects of employed population, per capita output value, input area per unit of output value, output per unit area and output structure on carbon sinks in each province. The results indicate that: (1) The potential energy intensity and technological progress are the driving factors of carbon emission reduction in most provinces, while output value and energy consumption structure are the important hindering factors. Each province should improve the overall efficiency of energy utilization, promote technological progress, and optimize the energy consumption structure to reduce carbon emissions. (2) The non-stationarity of scale efficiency of energy utilization promoted carbon emission reduction recently. All provinces, especially those with scale efficiency less than 1, should pursue the optimal allocation efficiency of input resources and maintain the coordination of scale development. (3) The effects reflecting the inter-regional pure technical efficiency imbalance and the impact of inter-regional scale efficiency are mostly 0. The provinces with positive effects should catch up with the advanced provinces and seek the best technology and management level and the optimal input-output scale. (4) The effects reflecting the imbalance of pure technological efficiency and the ineffectiveness of scale efficiency within the region are almost 0. Each province should continue to maintain a high level of technology and management, as well as a high efficiency in resource allocation, to ensure the efficient use of input resources and their optimal scale. (5) Per capita output value and output per unit area are the main driving factors of carbon sinks. In addition to leveraging the positive effects of these two factors, each province should focus on optimizing product structure and increasing the employed population to increase carbon sinks. (6) Regional integrated and coordinated management should be implemented. According to the important factors affecting the change of carbon emissions and carbon sinks in each region, the provinces in the region should be coordinated to take targeted measures.
期刊介绍:
Ocean & Coastal Management is the leading international journal dedicated to the study of all aspects of ocean and coastal management from the global to local levels.
We publish rigorously peer-reviewed manuscripts from all disciplines, and inter-/trans-disciplinary and co-designed research, but all submissions must make clear the relevance to management and/or governance issues relevant to the sustainable development and conservation of oceans and coasts.
Comparative studies (from sub-national to trans-national cases, and other management / policy arenas) are encouraged, as are studies that critically assess current management practices and governance approaches. Submissions involving robust analysis, development of theory, and improvement of management practice are especially welcome.