{"title":"基于新型电磁-热-机械耦合模型的玄武岩微波诱导压裂的微观断裂机理","authors":"Jian Ma, Zheng-Wei Li, Wen-Feng Guo, Liang-Xiao Chen","doi":"10.1016/j.compgeo.2024.106874","DOIUrl":null,"url":null,"abstract":"<div><div>Microwave-assisted rock fracturing is recognized for its efficiency, energy savings, and environmental benefits. Investigating microscopic mechanisms of microwave-induced rock fracturing is essential for predicting the weakening effect on rock. A coupled Electromagnetic–Thermal–Mechanical model based on FEM–DEM was established to describe the response of rock under microwave irradiation. This model employs interpolation algorithms and mineral lattices randomization algorithms to establish a 2D cross-sectional representation of rock. A discrete element calculation method is proposed to synchronize computational time with the experimental time. The model can simulate the multi-physical field response of different rocks under various conditions, making it an effective tool for studying microwave-induced rock fracturing. The effectiveness of the numerical model was validated through open-end microwave-induced fracturing experiments on basalt. Additionally, the study elucidates the micro-fracture mechanism of basalt under microwave irradiation. The results indicate that the direction of crack propagation is influenced by microwave power and boundary effects. The patterns of fracture development between minerals are summarized as follows: Initial fractures primarily result from the rapid heating of microwave-absorbing minerals like enstatite,creating a significant temperature gradient. With increased heating time, heat transfers to highly expansive minerals such as olivine, causing fractures due to localized thermal expansion.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106874"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Micro-fracture mechanism of microwave induced fracturing of basalt based on a novel Electromagnetic–Thermal–Mechanical coupling model\",\"authors\":\"Jian Ma, Zheng-Wei Li, Wen-Feng Guo, Liang-Xiao Chen\",\"doi\":\"10.1016/j.compgeo.2024.106874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Microwave-assisted rock fracturing is recognized for its efficiency, energy savings, and environmental benefits. Investigating microscopic mechanisms of microwave-induced rock fracturing is essential for predicting the weakening effect on rock. A coupled Electromagnetic–Thermal–Mechanical model based on FEM–DEM was established to describe the response of rock under microwave irradiation. This model employs interpolation algorithms and mineral lattices randomization algorithms to establish a 2D cross-sectional representation of rock. A discrete element calculation method is proposed to synchronize computational time with the experimental time. The model can simulate the multi-physical field response of different rocks under various conditions, making it an effective tool for studying microwave-induced rock fracturing. The effectiveness of the numerical model was validated through open-end microwave-induced fracturing experiments on basalt. Additionally, the study elucidates the micro-fracture mechanism of basalt under microwave irradiation. The results indicate that the direction of crack propagation is influenced by microwave power and boundary effects. The patterns of fracture development between minerals are summarized as follows: Initial fractures primarily result from the rapid heating of microwave-absorbing minerals like enstatite,creating a significant temperature gradient. With increased heating time, heat transfers to highly expansive minerals such as olivine, causing fractures due to localized thermal expansion.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"177 \",\"pages\":\"Article 106874\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24008139\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008139","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Micro-fracture mechanism of microwave induced fracturing of basalt based on a novel Electromagnetic–Thermal–Mechanical coupling model
Microwave-assisted rock fracturing is recognized for its efficiency, energy savings, and environmental benefits. Investigating microscopic mechanisms of microwave-induced rock fracturing is essential for predicting the weakening effect on rock. A coupled Electromagnetic–Thermal–Mechanical model based on FEM–DEM was established to describe the response of rock under microwave irradiation. This model employs interpolation algorithms and mineral lattices randomization algorithms to establish a 2D cross-sectional representation of rock. A discrete element calculation method is proposed to synchronize computational time with the experimental time. The model can simulate the multi-physical field response of different rocks under various conditions, making it an effective tool for studying microwave-induced rock fracturing. The effectiveness of the numerical model was validated through open-end microwave-induced fracturing experiments on basalt. Additionally, the study elucidates the micro-fracture mechanism of basalt under microwave irradiation. The results indicate that the direction of crack propagation is influenced by microwave power and boundary effects. The patterns of fracture development between minerals are summarized as follows: Initial fractures primarily result from the rapid heating of microwave-absorbing minerals like enstatite,creating a significant temperature gradient. With increased heating time, heat transfers to highly expansive minerals such as olivine, causing fractures due to localized thermal expansion.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.