{"title":"岩石的有限应变梯度扩展损伤-塑性模型:了解材料失效和结构失稳带来的灾难","authors":"Xiaofeng Cheng , Xianhui Feng , Chun’an Tang","doi":"10.1016/j.compgeo.2024.106891","DOIUrl":null,"url":null,"abstract":"<div><div>Rock, a natural geological material, exhibits diverse collapse modes that make predicting catastrophic behavior challenging. Material failure and structural instability each provide independent mechanical explanations for rock catastrophes. However, isolated perspectives often obscure the distinctions and connections between these two critical mechanisms. Here, we propose a finite-strain gradient-extended damage-plastic scheme within a thermodynamically consistent framework to encapsulate the indispensable dual effects of failure and instability. The crack propagation and frictional dissipation of crack clusters in rock materials inspire coupled damage-plastic theory, whereas the large displacement, large rotation and large strain of rock structures motivate the application of finite strain theory. The proposed scheme incorporates nonlocal gradient-enhanced terms to mitigate mesh dependence and is immune to spurious energy dissipation under cyclic loading. Constitutive treatment at finite strain retains the easily achievable features of the small deformation case. The model is validated through laboratory- and engineering-scale simulations, offering insights into the mechanisms of rock catastrophes. Our findings highlight the dual role of material failure and structural instability as interconnected drivers of rock catastrophes, offering a more holistic understanding for effective prediction and mitigation strategies.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"177 ","pages":"Article 106891"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-strain gradient-extended damage-plastic modeling of rock: Understanding catastrophe from material failure and structural instability\",\"authors\":\"Xiaofeng Cheng , Xianhui Feng , Chun’an Tang\",\"doi\":\"10.1016/j.compgeo.2024.106891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Rock, a natural geological material, exhibits diverse collapse modes that make predicting catastrophic behavior challenging. Material failure and structural instability each provide independent mechanical explanations for rock catastrophes. However, isolated perspectives often obscure the distinctions and connections between these two critical mechanisms. Here, we propose a finite-strain gradient-extended damage-plastic scheme within a thermodynamically consistent framework to encapsulate the indispensable dual effects of failure and instability. The crack propagation and frictional dissipation of crack clusters in rock materials inspire coupled damage-plastic theory, whereas the large displacement, large rotation and large strain of rock structures motivate the application of finite strain theory. The proposed scheme incorporates nonlocal gradient-enhanced terms to mitigate mesh dependence and is immune to spurious energy dissipation under cyclic loading. Constitutive treatment at finite strain retains the easily achievable features of the small deformation case. The model is validated through laboratory- and engineering-scale simulations, offering insights into the mechanisms of rock catastrophes. Our findings highlight the dual role of material failure and structural instability as interconnected drivers of rock catastrophes, offering a more holistic understanding for effective prediction and mitigation strategies.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"177 \",\"pages\":\"Article 106891\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X24008309\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X24008309","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Finite-strain gradient-extended damage-plastic modeling of rock: Understanding catastrophe from material failure and structural instability
Rock, a natural geological material, exhibits diverse collapse modes that make predicting catastrophic behavior challenging. Material failure and structural instability each provide independent mechanical explanations for rock catastrophes. However, isolated perspectives often obscure the distinctions and connections between these two critical mechanisms. Here, we propose a finite-strain gradient-extended damage-plastic scheme within a thermodynamically consistent framework to encapsulate the indispensable dual effects of failure and instability. The crack propagation and frictional dissipation of crack clusters in rock materials inspire coupled damage-plastic theory, whereas the large displacement, large rotation and large strain of rock structures motivate the application of finite strain theory. The proposed scheme incorporates nonlocal gradient-enhanced terms to mitigate mesh dependence and is immune to spurious energy dissipation under cyclic loading. Constitutive treatment at finite strain retains the easily achievable features of the small deformation case. The model is validated through laboratory- and engineering-scale simulations, offering insights into the mechanisms of rock catastrophes. Our findings highlight the dual role of material failure and structural instability as interconnected drivers of rock catastrophes, offering a more holistic understanding for effective prediction and mitigation strategies.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.