Amrit Shankar Verma , Chun-Yen Wu , Miguel Alonso Díaz , Julie J.E. Teuwen
{"title":"使用脉动喷射侵蚀测试仪(PJET)分析雨水侵蚀:水滴撞击频率和干燥间隔对孵化时间的影响","authors":"Amrit Shankar Verma , Chun-Yen Wu , Miguel Alonso Díaz , Julie J.E. Teuwen","doi":"10.1016/j.wear.2024.205614","DOIUrl":null,"url":null,"abstract":"<div><div>Accelerated laboratory testing is essential to understand the rain erosion behavior of coated samples applied to the leading edge surface of a wind turbine blade. This study investigates the impact of droplet impact frequencies and dry intervals on the incubation time for damage on polyurethane-coated samples using a Pulsating Jet Erosion Tester (PJET). A novel theoretical model for water slug volume is introduced, allowing for a more accurate comparison across different impact velocities and frequencies. The effect of dry intervals on coating performance is quantified, revealing that longer dry intervals and shorter pre-dry rain exposure can significantly increase the number of impacts a coating can withstand before damage. The study challenges the traditional continuous impingement testing by demonstrating that dry intervals can extend incubation time by a factor of three to five. Additionally, this paper proposes a recalibrated approach to PJET testing, which better mimics the cyclic nature of real-world rainfall, leading to improved predictive models for material degradation. The findings emphasize the importance of considering the visco-elastic behavior of coatings and the role of intermittent rain exposure in erosion testing, offering invaluable insights for designing future PJET test parameters.</div></div>","PeriodicalId":23970,"journal":{"name":"Wear","volume":"562 ","pages":"Article 205614"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing rain erosion using a Pulsating Jet Erosion Tester (PJET): Effect of droplet impact frequencies and dry intervals on incubation times\",\"authors\":\"Amrit Shankar Verma , Chun-Yen Wu , Miguel Alonso Díaz , Julie J.E. Teuwen\",\"doi\":\"10.1016/j.wear.2024.205614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accelerated laboratory testing is essential to understand the rain erosion behavior of coated samples applied to the leading edge surface of a wind turbine blade. This study investigates the impact of droplet impact frequencies and dry intervals on the incubation time for damage on polyurethane-coated samples using a Pulsating Jet Erosion Tester (PJET). A novel theoretical model for water slug volume is introduced, allowing for a more accurate comparison across different impact velocities and frequencies. The effect of dry intervals on coating performance is quantified, revealing that longer dry intervals and shorter pre-dry rain exposure can significantly increase the number of impacts a coating can withstand before damage. The study challenges the traditional continuous impingement testing by demonstrating that dry intervals can extend incubation time by a factor of three to five. Additionally, this paper proposes a recalibrated approach to PJET testing, which better mimics the cyclic nature of real-world rainfall, leading to improved predictive models for material degradation. The findings emphasize the importance of considering the visco-elastic behavior of coatings and the role of intermittent rain exposure in erosion testing, offering invaluable insights for designing future PJET test parameters.</div></div>\",\"PeriodicalId\":23970,\"journal\":{\"name\":\"Wear\",\"volume\":\"562 \",\"pages\":\"Article 205614\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wear\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004316482400379X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wear","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004316482400379X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Analyzing rain erosion using a Pulsating Jet Erosion Tester (PJET): Effect of droplet impact frequencies and dry intervals on incubation times
Accelerated laboratory testing is essential to understand the rain erosion behavior of coated samples applied to the leading edge surface of a wind turbine blade. This study investigates the impact of droplet impact frequencies and dry intervals on the incubation time for damage on polyurethane-coated samples using a Pulsating Jet Erosion Tester (PJET). A novel theoretical model for water slug volume is introduced, allowing for a more accurate comparison across different impact velocities and frequencies. The effect of dry intervals on coating performance is quantified, revealing that longer dry intervals and shorter pre-dry rain exposure can significantly increase the number of impacts a coating can withstand before damage. The study challenges the traditional continuous impingement testing by demonstrating that dry intervals can extend incubation time by a factor of three to five. Additionally, this paper proposes a recalibrated approach to PJET testing, which better mimics the cyclic nature of real-world rainfall, leading to improved predictive models for material degradation. The findings emphasize the importance of considering the visco-elastic behavior of coatings and the role of intermittent rain exposure in erosion testing, offering invaluable insights for designing future PJET test parameters.
期刊介绍:
Wear journal is dedicated to the advancement of basic and applied knowledge concerning the nature of wear of materials. Broadly, topics of interest range from development of fundamental understanding of the mechanisms of wear to innovative solutions to practical engineering problems. Authors of experimental studies are expected to comment on the repeatability of the data, and whenever possible, conduct multiple measurements under similar testing conditions. Further, Wear embraces the highest standards of professional ethics, and the detection of matching content, either in written or graphical form, from other publications by the current authors or by others, may result in rejection.