{"title":"高斯正交公式是一类无限可微分函数的强渐近最优公式","authors":"Guiqiao Xu","doi":"10.1016/j.jat.2024.106117","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the optimal quadrature formulae of a class <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> of infinitely differentiable functions on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. We obtain the strong equivalences of the optimal worst case errors of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> for standard information and Hermite data. We proved that the Gaussian quadrature formulae are strongly asymptotically optimal.</div></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":"305 ","pages":"Article 106117"},"PeriodicalIF":0.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian quadrature formulae are strongly asymptotically optimal for a class of infinitely differentiable functions\",\"authors\":\"Guiqiao Xu\",\"doi\":\"10.1016/j.jat.2024.106117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the optimal quadrature formulae of a class <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> of infinitely differentiable functions on <span><math><mrow><mo>[</mo><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow></math></span>. We obtain the strong equivalences of the optimal worst case errors of <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> for standard information and Hermite data. We proved that the Gaussian quadrature formulae are strongly asymptotically optimal.</div></div>\",\"PeriodicalId\":54878,\"journal\":{\"name\":\"Journal of Approximation Theory\",\"volume\":\"305 \",\"pages\":\"Article 106117\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Approximation Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021904524001059\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021904524001059","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Gaussian quadrature formulae are strongly asymptotically optimal for a class of infinitely differentiable functions
This paper investigates the optimal quadrature formulae of a class of infinitely differentiable functions on . We obtain the strong equivalences of the optimal worst case errors of for standard information and Hermite data. We proved that the Gaussian quadrature formulae are strongly asymptotically optimal.
期刊介绍:
The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others:
• Classical approximation
• Abstract approximation
• Constructive approximation
• Degree of approximation
• Fourier expansions
• Interpolation of operators
• General orthogonal systems
• Interpolation and quadratures
• Multivariate approximation
• Orthogonal polynomials
• Padé approximation
• Rational approximation
• Spline functions of one and several variables
• Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds
• Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth)
• Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis
• Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth)
• Gabor (Weyl-Heisenberg) expansions and sampling theory.