高能电子治疗规划:显示该模式潜力的研究

James L. Bedford, Uwe Oelfke
{"title":"高能电子治疗规划:显示该模式潜力的研究","authors":"James L. Bedford,&nbsp;Uwe Oelfke","doi":"10.1016/j.phro.2024.100670","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Radiotherapy using Very High Energy Electrons (VHEE) has the potential to reduce dose to organs at risk compared to photons. This article therefore reviews treatment planning for VHEE, to clarify the potential benefit of the modality.</div></div><div><h3>Materials and methods</h3><div>Articles on VHEE were identified and those which focused on treatment planning were manually selected, particularly those which contained results on patient datasets. Benefits in absorbed dose to organs at risk were converted to percentages of prescription dose so as to provide uniform, clinically relevant reporting.</div></div><div><h3>Results</h3><div>Increased beam energy was found to reduce electron scatter and give rise to a narrower penumbra but lead to a rather constant depth dose curve, which was not as useful for sparing normal tissues as that of protons. The sharp penumbra of VHEE was of benefit in treatment planning for producing treatment plans with conformal dose shaping, with improved dose to critical structures being demonstrated for several treatment sites. Mean dose to critical structures, relative to the prescribed dose, was in the order of 0–10% lower than photons and 0–10% higher than protons. The delivery technology and dose distributions were also promising for radiotherapy with ultra-high dose rate (FLASH).</div></div><div><h3>Conclusion</h3><div>At present, the potential clinical benefit of VHEE relative to photons or protons is small. Further studies are needed to more precisely quantify the relative performance of broad beams versus pencil beam scanning and to investigate treatment sites that might benefit maximally from the use of VHEE beams.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"32 ","pages":"Article 100670"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment planning for very high energy electrons: Studies that indicate the potential of the modality\",\"authors\":\"James L. Bedford,&nbsp;Uwe Oelfke\",\"doi\":\"10.1016/j.phro.2024.100670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Radiotherapy using Very High Energy Electrons (VHEE) has the potential to reduce dose to organs at risk compared to photons. This article therefore reviews treatment planning for VHEE, to clarify the potential benefit of the modality.</div></div><div><h3>Materials and methods</h3><div>Articles on VHEE were identified and those which focused on treatment planning were manually selected, particularly those which contained results on patient datasets. Benefits in absorbed dose to organs at risk were converted to percentages of prescription dose so as to provide uniform, clinically relevant reporting.</div></div><div><h3>Results</h3><div>Increased beam energy was found to reduce electron scatter and give rise to a narrower penumbra but lead to a rather constant depth dose curve, which was not as useful for sparing normal tissues as that of protons. The sharp penumbra of VHEE was of benefit in treatment planning for producing treatment plans with conformal dose shaping, with improved dose to critical structures being demonstrated for several treatment sites. Mean dose to critical structures, relative to the prescribed dose, was in the order of 0–10% lower than photons and 0–10% higher than protons. The delivery technology and dose distributions were also promising for radiotherapy with ultra-high dose rate (FLASH).</div></div><div><h3>Conclusion</h3><div>At present, the potential clinical benefit of VHEE relative to photons or protons is small. Further studies are needed to more precisely quantify the relative performance of broad beams versus pencil beam scanning and to investigate treatment sites that might benefit maximally from the use of VHEE beams.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"32 \",\"pages\":\"Article 100670\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景和目的与光子相比,使用甚高能电子(VHEE)进行放疗有可能减少危险器官的剂量。因此,本文对 VHEE 的治疗计划进行了回顾,以明确该模式的潜在益处。材料与方法对有关 VHEE 的文章进行了识别,并人工筛选出那些关注治疗计划的文章,尤其是那些包含患者数据集结果的文章。结果发现增加射束能量可减少电子散射,使半影更窄,但导致深度剂量曲线相当恒定,不像质子那样有助于保护正常组织。超高频电子显微镜的尖锐半影有利于治疗计划的制定,从而产生适形剂量整形的治疗计划,多个治疗部位的关键结构的剂量都得到了改善。与规定剂量相比,关键结构的平均剂量比光子低 0-10%,比质子高 0-10%。结论目前,相对于光子或质子,VHEE 的潜在临床效益还很小。还需要进一步研究,以更精确地量化宽光束与铅笔束扫描的相对性能,并调查可能从使用 VHEE 光束中获益最大的治疗部位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treatment planning for very high energy electrons: Studies that indicate the potential of the modality

Background and purpose

Radiotherapy using Very High Energy Electrons (VHEE) has the potential to reduce dose to organs at risk compared to photons. This article therefore reviews treatment planning for VHEE, to clarify the potential benefit of the modality.

Materials and methods

Articles on VHEE were identified and those which focused on treatment planning were manually selected, particularly those which contained results on patient datasets. Benefits in absorbed dose to organs at risk were converted to percentages of prescription dose so as to provide uniform, clinically relevant reporting.

Results

Increased beam energy was found to reduce electron scatter and give rise to a narrower penumbra but lead to a rather constant depth dose curve, which was not as useful for sparing normal tissues as that of protons. The sharp penumbra of VHEE was of benefit in treatment planning for producing treatment plans with conformal dose shaping, with improved dose to critical structures being demonstrated for several treatment sites. Mean dose to critical structures, relative to the prescribed dose, was in the order of 0–10% lower than photons and 0–10% higher than protons. The delivery technology and dose distributions were also promising for radiotherapy with ultra-high dose rate (FLASH).

Conclusion

At present, the potential clinical benefit of VHEE relative to photons or protons is small. Further studies are needed to more precisely quantify the relative performance of broad beams versus pencil beam scanning and to investigate treatment sites that might benefit maximally from the use of VHEE beams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics and Imaging in Radiation Oncology
Physics and Imaging in Radiation Oncology Physics and Astronomy-Radiation
CiteScore
5.30
自引率
18.90%
发文量
93
审稿时长
6 weeks
期刊最新文献
Results of 2023 survey on the use of synthetic computed tomography for magnetic resonance Imaging-only radiotherapy: Current status and future steps Head and neck automatic multi-organ segmentation on Dual-Energy Computed Tomography Automatic segmentation for magnetic resonance imaging guided individual elective lymph node irradiation in head and neck cancer patients Development of a novel 3D-printed dynamic anthropomorphic thorax phantom for evaluation of four-dimensional computed tomography Technical feasibility of delivering a simultaneous integrated boost in partial breast irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1