Frida Dohlmar , Björn Morén , Michael Sandborg , Torbjörn Larsson , Åsa Carlsson Tedgren
{"title":"宫颈近距离放射治疗反向治疗规划中的停留时间整形","authors":"Frida Dohlmar , Björn Morén , Michael Sandborg , Torbjörn Larsson , Åsa Carlsson Tedgren","doi":"10.1016/j.phro.2024.100672","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Manual treatment planning for cervical brachytherapy is a challenging task; therefore, we investigated a method for inverse treatment planning using pseudo-structures to control the dwell distribution. Our hypothesis was that this method could produce treatment plans with a pear-shaped dose distribution and a high central dose, that comply with clinical constraints.</div></div><div><h3>Materials and methods</h3><div>Data from 16 previously treated patients were used to compare three treatment planning methods: i) manual, ii) straightforward inverse, and iii) inverse with pseudo-structures. The treatment plans were compared using dose-volume histogram parameters and by analysing the dwell times, and the distribution of total reference air-kerma (TRAK) in the different parts of the applicator. Methods were evaluated in one treatment planning system and verified in a second treatment planning system.</div></div><div><h3>Results</h3><div>The median dose to 90 % of the clinical tumor volume was 7.6 Gy, 7.8 Gy and 8.1 Gy for manual, pseudo-structure and straightforward methods respectively. Distribution of TRAK for the different parts of the applicator for the three methods (manual, pseudo-structures, and straightforward), with combined intracavitary and interstitial treatments, were for vaginal part 39 %, 33 % and 15 %, for intra-uterine part 47 %, 50 % and 47 % and for interstitial part 13 %, 17 % and 38 % respectively. The results were similar in the second treatment planning system.</div></div><div><h3>Conclusion</h3><div>The developed pseudo-structures worked as intended in shaping the dwell time distribution and in meeting the clinical constraints for both investigated treatment planning systems.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"32 ","pages":"Article 100672"},"PeriodicalIF":3.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dwell time shaping in inverse treatment planning for cervical brachytherapy\",\"authors\":\"Frida Dohlmar , Björn Morén , Michael Sandborg , Torbjörn Larsson , Åsa Carlsson Tedgren\",\"doi\":\"10.1016/j.phro.2024.100672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and purpose</h3><div>Manual treatment planning for cervical brachytherapy is a challenging task; therefore, we investigated a method for inverse treatment planning using pseudo-structures to control the dwell distribution. Our hypothesis was that this method could produce treatment plans with a pear-shaped dose distribution and a high central dose, that comply with clinical constraints.</div></div><div><h3>Materials and methods</h3><div>Data from 16 previously treated patients were used to compare three treatment planning methods: i) manual, ii) straightforward inverse, and iii) inverse with pseudo-structures. The treatment plans were compared using dose-volume histogram parameters and by analysing the dwell times, and the distribution of total reference air-kerma (TRAK) in the different parts of the applicator. Methods were evaluated in one treatment planning system and verified in a second treatment planning system.</div></div><div><h3>Results</h3><div>The median dose to 90 % of the clinical tumor volume was 7.6 Gy, 7.8 Gy and 8.1 Gy for manual, pseudo-structure and straightforward methods respectively. Distribution of TRAK for the different parts of the applicator for the three methods (manual, pseudo-structures, and straightforward), with combined intracavitary and interstitial treatments, were for vaginal part 39 %, 33 % and 15 %, for intra-uterine part 47 %, 50 % and 47 % and for interstitial part 13 %, 17 % and 38 % respectively. The results were similar in the second treatment planning system.</div></div><div><h3>Conclusion</h3><div>The developed pseudo-structures worked as intended in shaping the dwell time distribution and in meeting the clinical constraints for both investigated treatment planning systems.</div></div>\",\"PeriodicalId\":36850,\"journal\":{\"name\":\"Physics and Imaging in Radiation Oncology\",\"volume\":\"32 \",\"pages\":\"Article 100672\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics and Imaging in Radiation Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405631624001428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631624001428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
Dwell time shaping in inverse treatment planning for cervical brachytherapy
Background and purpose
Manual treatment planning for cervical brachytherapy is a challenging task; therefore, we investigated a method for inverse treatment planning using pseudo-structures to control the dwell distribution. Our hypothesis was that this method could produce treatment plans with a pear-shaped dose distribution and a high central dose, that comply with clinical constraints.
Materials and methods
Data from 16 previously treated patients were used to compare three treatment planning methods: i) manual, ii) straightforward inverse, and iii) inverse with pseudo-structures. The treatment plans were compared using dose-volume histogram parameters and by analysing the dwell times, and the distribution of total reference air-kerma (TRAK) in the different parts of the applicator. Methods were evaluated in one treatment planning system and verified in a second treatment planning system.
Results
The median dose to 90 % of the clinical tumor volume was 7.6 Gy, 7.8 Gy and 8.1 Gy for manual, pseudo-structure and straightforward methods respectively. Distribution of TRAK for the different parts of the applicator for the three methods (manual, pseudo-structures, and straightforward), with combined intracavitary and interstitial treatments, were for vaginal part 39 %, 33 % and 15 %, for intra-uterine part 47 %, 50 % and 47 % and for interstitial part 13 %, 17 % and 38 % respectively. The results were similar in the second treatment planning system.
Conclusion
The developed pseudo-structures worked as intended in shaping the dwell time distribution and in meeting the clinical constraints for both investigated treatment planning systems.