用于粒子场记录和跟踪的双螺旋相位滤波器数字在线全息技术

IF 3.5 2区 工程技术 Q2 OPTICS Optics and Lasers in Engineering Pub Date : 2024-11-16 DOI:10.1016/j.optlaseng.2024.108694
J. Lobera , A.M. López Torres , N. Andrés , F.J. Torcal-Milla , E.M. Roche , V. Palero
{"title":"用于粒子场记录和跟踪的双螺旋相位滤波器数字在线全息技术","authors":"J. Lobera ,&nbsp;A.M. López Torres ,&nbsp;N. Andrés ,&nbsp;F.J. Torcal-Milla ,&nbsp;E.M. Roche ,&nbsp;V. Palero","doi":"10.1016/j.optlaseng.2024.108694","DOIUrl":null,"url":null,"abstract":"<div><div>The application of digital in-line holography in fluid velocimetry is mainly limited by the twin image that hinders the particle position and velocity measurements. In this work, we propose the use of two spiral phase filters in a digital in-line holography configuration to discriminate the real and virtual images. The first filter is a physical plate that modifies the object spectrum prior the recording. The second filter is a numerical frequency filter, applied in the reconstruction process, which reshape one of the particle images into a point-like image while blurs its twin image. In this way, particle tracking algorithms, based on the detection of intensity peaks, can easily locate and track particles. The good performance of double spiral phase filter in-line holography for particle field recording and particle tracking has been demonstrated experimentally in the present work.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":"184 ","pages":"Article 108694"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double spiral phase filter digital in-line holography for particle field recording and tracking\",\"authors\":\"J. Lobera ,&nbsp;A.M. López Torres ,&nbsp;N. Andrés ,&nbsp;F.J. Torcal-Milla ,&nbsp;E.M. Roche ,&nbsp;V. Palero\",\"doi\":\"10.1016/j.optlaseng.2024.108694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of digital in-line holography in fluid velocimetry is mainly limited by the twin image that hinders the particle position and velocity measurements. In this work, we propose the use of two spiral phase filters in a digital in-line holography configuration to discriminate the real and virtual images. The first filter is a physical plate that modifies the object spectrum prior the recording. The second filter is a numerical frequency filter, applied in the reconstruction process, which reshape one of the particle images into a point-like image while blurs its twin image. In this way, particle tracking algorithms, based on the detection of intensity peaks, can easily locate and track particles. The good performance of double spiral phase filter in-line holography for particle field recording and particle tracking has been demonstrated experimentally in the present work.</div></div>\",\"PeriodicalId\":49719,\"journal\":{\"name\":\"Optics and Lasers in Engineering\",\"volume\":\"184 \",\"pages\":\"Article 108694\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Lasers in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143816624006729\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006729","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

数字在线全息技术在流体测速中的应用主要受到孪生图像的限制,孪生图像阻碍了粒子位置和速度的测量。在这项工作中,我们提出在数字在线全息配置中使用两个螺旋相位滤波器来区分真实图像和虚拟图像。第一个滤波器是一个物理板,可在记录前修改对象光谱。第二个滤波器是一个数字频率滤波器,应用于重建过程中,可将其中一个粒子图像重塑为点状图像,同时模糊其孪生图像。这样,基于强度峰值检测的粒子跟踪算法就能轻松定位和跟踪粒子。本研究通过实验证明了双螺旋相位滤波器在线全息技术在粒子场记录和粒子跟踪方面的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Double spiral phase filter digital in-line holography for particle field recording and tracking
The application of digital in-line holography in fluid velocimetry is mainly limited by the twin image that hinders the particle position and velocity measurements. In this work, we propose the use of two spiral phase filters in a digital in-line holography configuration to discriminate the real and virtual images. The first filter is a physical plate that modifies the object spectrum prior the recording. The second filter is a numerical frequency filter, applied in the reconstruction process, which reshape one of the particle images into a point-like image while blurs its twin image. In this way, particle tracking algorithms, based on the detection of intensity peaks, can easily locate and track particles. The good performance of double spiral phase filter in-line holography for particle field recording and particle tracking has been demonstrated experimentally in the present work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
期刊最新文献
Multifunctional processor based on cascaded switchable polarization-multiplexed metasurface Double spiral phase filter digital in-line holography for particle field recording and tracking Femtosecond laser processing with aberration correction based on Shack-Hartmann wavefront sensor Efficient point cloud occlusion method for ultra wide-angle computer-generated holograms In-situ full-wafer metrology via coupled white light and monochromatic stroboscopic illumination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1