{"title":"基于 R 限制 R 结构(子结构)故障模式的火腿图容错评估","authors":"Yayu Yang, Mingzu Zhang, Jixiang Meng","doi":"10.1016/j.amc.2024.129160","DOIUrl":null,"url":null,"abstract":"<div><div>The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of <em>R</em>-structure and <em>R</em>-substructure connectivities to satisfy that each remaining vertex has not less than <em>r</em> neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let <em>R</em> be a connected subgraph of a connected graph <em>G</em>. The <em>r</em>-restricted <em>R</em>-structure connectivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span> (resp. <em>r</em>-restricted <em>R</em>-substructure connectivity <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span>) of <em>G</em> is the minimum cardinality of a set of subgraphs <span><math><mi>F</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is isomorphic to <em>R</em> (resp. <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a connected subgraph of <em>R</em>) for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></math></span>, and <span><math><mi>G</mi><mo>−</mo><mi>F</mi></math></span> is disconnected with the minimum degree of each component being at least <em>r</em>. Note that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> reduces to <em>r</em>-restricted connectivity <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also called <em>r</em>-good neighbor connectivity). In this paper, we focus on <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> for the <em>L</em>-ary <em>n</em>-dimensional hamming graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, where <span><math><mi>R</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>}</mo></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>L</mi><mo>≥</mo><mn>3</mn></math></span>, we determine the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor connectivity of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, i.e., <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, and the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor diagnosability of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> under the PMC model and MM* model, i.e., <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>[</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>]</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. And we also drive that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Moreover, we offer an upper bound of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> (resp. <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, and establish that it is sharp for ternary <em>n</em>-cubes <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Specifically, <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"489 ","pages":"Article 129160"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault tolerance assessment for hamming graphs based on r-restricted R-structure(substructure) fault pattern\",\"authors\":\"Yayu Yang, Mingzu Zhang, Jixiang Meng\",\"doi\":\"10.1016/j.amc.2024.129160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of <em>R</em>-structure and <em>R</em>-substructure connectivities to satisfy that each remaining vertex has not less than <em>r</em> neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let <em>R</em> be a connected subgraph of a connected graph <em>G</em>. The <em>r</em>-restricted <em>R</em>-structure connectivity <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span> (resp. <em>r</em>-restricted <em>R</em>-substructure connectivity <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><mi>G</mi><mo>;</mo><mi>R</mi><mo>)</mo></math></span>) of <em>G</em> is the minimum cardinality of a set of subgraphs <span><math><mi>F</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>}</mo></math></span> such that <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is isomorphic to <em>R</em> (resp. <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is a connected subgraph of <em>R</em>) for <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>m</mi></math></span>, and <span><math><mi>G</mi><mo>−</mo><mi>F</mi></math></span> is disconnected with the minimum degree of each component being at least <em>r</em>. Note that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><mi>G</mi><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> reduces to <em>r</em>-restricted connectivity <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> (also called <em>r</em>-good neighbor connectivity). In this paper, we focus on <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> and <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><mi>R</mi><mo>)</mo></math></span> for the <em>L</em>-ary <em>n</em>-dimensional hamming graph <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, where <span><math><mi>R</mi><mo>∈</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>,</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>}</mo></math></span>. For <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span> and <span><math><mi>L</mi><mo>≥</mo><mn>3</mn></math></span>, we determine the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor connectivity of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, i.e., <span><math><msup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span>, and the <span><math><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></math></span>-good neighbor diagnosability of <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> under the PMC model and MM* model, i.e., <span><math><msup><mrow><mi>t</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>)</mo><mo>=</mo><mo>[</mo><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo><mo>−</mo><mn>1</mn><mo>]</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>−</mo><mn>1</mn></math></span>. And we also drive that <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><mi>r</mi></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msub><mrow><mi>K</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>(</mo><mi>L</mi><mo>−</mo><mn>1</mn><mo>)</mo><msup><mrow><mi>L</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>(</mo><mi>n</mi><mo>−</mo><mi>r</mi><mo>)</mo></math></span> for <span><math><mn>1</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>3</mn></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>. Moreover, we offer an upper bound of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo></math></span> (resp. <span><math><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>, and establish that it is sharp for ternary <em>n</em>-cubes <span><math><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Specifically, <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><msubsup><mrow><mi>κ</mi></mrow><mrow><mn>2</mn></mrow><mrow><mi>s</mi></mrow></msubsup><mo>(</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>;</mo><msubsup><mrow><mi>K</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mo>)</mo><mo>=</mo><mn>2</mn><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span> for <span><math><mi>n</mi><mo>≥</mo><mn>3</mn></math></span>.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"489 \",\"pages\":\"Article 129160\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324006210\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324006210","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
存储系统和多核计算系统之间的互连网络是海量数据访问和存储的通信桥梁,是影响高性能计算系统性能的关键因素。通过对 R-结构和 R-子结构连通性的定义进行额外限制,满足每个剩余顶点的邻居不少于 r 个,我们就可以动态评估分离组件的明细度,以满足结构故障下的上述条件,从而提高对高性能计算系统容错性和可靠性的评估。设 R 是连通图 G 的一个连通子图。G 的 r 限制 R 结构连通性 κr(G;R)(或 r 限制 R 子结构连通性 κrs(G;R))是 Fi 与 R 同构(或 Fi 是连通子图 F={F1,F2,...,Fm})的子图集合的最小卡片度。请注意,κr(G;K1) 简化为 r 限制连通性 κr(G)(也称为 r 好邻居连通性)。在本文中,我们主要研究 Lary n 维汉明图 KLn 的 κr(KLn;R) 和 κrs(KLn;R) ,其中 R∈{K1,K1,1,KL1} 。对于 0≤r≤n-3、n≥3 和 L≥3,我们确定了 KLn 的(L-1)r-好邻居连通性,即 κ(L-1)r(KLn)=(L-1)(n-r)Lr,以及 KLn 在 PMC 模型和 MM* 模型下的(L-1)r-好邻居可诊断性,即 t(L-1)r(KLn)=[(L-1)(n-r)-1]Lr-1。同时,我们还推导出 1≤r≤n-3, n≥4 时,κ(L-1)r(KLn;K1,1)=κ(L-1)rs(KLn;K1,1)=12(L-1)Lr(n-r)。此外,我们还给出了 n≥3 时的 κ2(KLn;KL1) (resp. κ2s(KLn;KL1))上限,并证明它对于三元 n 立方体 K3n 是尖锐的。具体地说,当 n≥3 时,κ2(K3n;K31)=κ2s(K3n;K31)=2(n-1)。
Fault tolerance assessment for hamming graphs based on r-restricted R-structure(substructure) fault pattern
The interconnection network between the storage system and the multi-core computing system is the bridge for communication of enormous amounts of data access and storage, which is the critical factor in affecting the performance of high-performance computing systems. By enforcing additional restrictions on the definition of R-structure and R-substructure connectivities to satisfy that each remaining vertex has not less than r neighbors, we can dynamically assess the cardinality of the separated component to meet the above conditions under structure faulty, thereby enhancing the evaluation of the fault tolerance and reliability of high-performance computing systems. Let R be a connected subgraph of a connected graph G. The r-restricted R-structure connectivity (resp. r-restricted R-substructure connectivity ) of G is the minimum cardinality of a set of subgraphs such that is isomorphic to R (resp. is a connected subgraph of R) for , and is disconnected with the minimum degree of each component being at least r. Note that reduces to r-restricted connectivity (also called r-good neighbor connectivity). In this paper, we focus on and for the L-ary n-dimensional hamming graph , where . For , and , we determine the -good neighbor connectivity of , i.e., , and the -good neighbor diagnosability of under the PMC model and MM* model, i.e., . And we also drive that for , . Moreover, we offer an upper bound of (resp. for , and establish that it is sharp for ternary n-cubes . Specifically, for .
期刊介绍:
Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results.
In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.