{"title":"CH3CN 分子的 N2-、O2- 和空气增宽半宽的 j 和 k 依赖关系","authors":"Q. Ma , C. Boulet","doi":"10.1016/j.jqsrt.2024.109265","DOIUrl":null,"url":null,"abstract":"<div><div>The N<sub>2</sub>-, O<sub>2</sub>, and air-broadened halfwidths of CH<sub>3</sub>CN lines in the parallel ν<sub>4</sub> band have been calculated, along with the relaxation matrices W. These calculations employ our modified and refined versions of the Robert-Bonamy formalism and use all potential parameters from the literature without adjustments. Extensive comparisons between the predicted N<sub>2</sub>-broadened halfwidths in the qR and qP branches from the models at <em>T</em> = 296 K and experimental measurements are presented, showing that our latest model very closely matches the measurements. For the qQ branch, where measurements are unavailable, we compare our N<sub>2</sub>-broadened halfwidths with the converted air-broadened data from HITRAN 2008, obtaining similarly good agreement. The variation in the j and k dependencies of the N<sub>2</sub>-broadened halfwidths is discussed in detail. Additionally, the theoretically determined conversion factor from N<sub>2</sub>- to air-broadening is provided. Finally, based on our theoretical calculations of N<sub>2</sub>-broadened halfwidths of the qR(j,3) lines at five different temperatures, ranging from 250 K to 350 K, the temperature exponent <em>N</em> is determined and its dependence on j is analyzed.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"330 ","pages":"Article 109265"},"PeriodicalIF":2.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The j and k dependencies of N2-, O2-, and air-broadened halfwidths of the CH3CN molecule\",\"authors\":\"Q. Ma , C. Boulet\",\"doi\":\"10.1016/j.jqsrt.2024.109265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The N<sub>2</sub>-, O<sub>2</sub>, and air-broadened halfwidths of CH<sub>3</sub>CN lines in the parallel ν<sub>4</sub> band have been calculated, along with the relaxation matrices W. These calculations employ our modified and refined versions of the Robert-Bonamy formalism and use all potential parameters from the literature without adjustments. Extensive comparisons between the predicted N<sub>2</sub>-broadened halfwidths in the qR and qP branches from the models at <em>T</em> = 296 K and experimental measurements are presented, showing that our latest model very closely matches the measurements. For the qQ branch, where measurements are unavailable, we compare our N<sub>2</sub>-broadened halfwidths with the converted air-broadened data from HITRAN 2008, obtaining similarly good agreement. The variation in the j and k dependencies of the N<sub>2</sub>-broadened halfwidths is discussed in detail. Additionally, the theoretically determined conversion factor from N<sub>2</sub>- to air-broadening is provided. Finally, based on our theoretical calculations of N<sub>2</sub>-broadened halfwidths of the qR(j,3) lines at five different temperatures, ranging from 250 K to 350 K, the temperature exponent <em>N</em> is determined and its dependence on j is analyzed.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"330 \",\"pages\":\"Article 109265\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407324003728\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407324003728","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
摘要
这些计算采用了我们对罗伯特-博纳米形式主义的修改和完善版本,并使用了文献中的所有电势参数,未作任何调整。在 T = 296 K 时,模型预测的 qR 和 qP 支 N2 扩宽半宽与实验测量结果进行了广泛的比较,结果表明我们的最新模型与测量结果非常接近。对于没有测量数据的 qQ 支,我们将我们的 N2 展宽半宽与来自 HITRAN 2008 的转换空气展宽数据进行了比较,得到了类似的良好一致性。我们详细讨论了 N2 扩增半宽的 j 和 k 依赖性变化。此外,还提供了从 N2-到空气增宽的理论确定的转换系数。最后,根据我们对从 250 K 到 350 K 五种不同温度下 qR(j,3) 线的 N2 扩宽半宽的理论计算,确定了温度指数 N 并分析了它与 j 的关系。
The j and k dependencies of N2-, O2-, and air-broadened halfwidths of the CH3CN molecule
The N2-, O2, and air-broadened halfwidths of CH3CN lines in the parallel ν4 band have been calculated, along with the relaxation matrices W. These calculations employ our modified and refined versions of the Robert-Bonamy formalism and use all potential parameters from the literature without adjustments. Extensive comparisons between the predicted N2-broadened halfwidths in the qR and qP branches from the models at T = 296 K and experimental measurements are presented, showing that our latest model very closely matches the measurements. For the qQ branch, where measurements are unavailable, we compare our N2-broadened halfwidths with the converted air-broadened data from HITRAN 2008, obtaining similarly good agreement. The variation in the j and k dependencies of the N2-broadened halfwidths is discussed in detail. Additionally, the theoretically determined conversion factor from N2- to air-broadening is provided. Finally, based on our theoretical calculations of N2-broadened halfwidths of the qR(j,3) lines at five different temperatures, ranging from 250 K to 350 K, the temperature exponent N is determined and its dependence on j is analyzed.
期刊介绍:
Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer:
- Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas.
- Spectral lineshape studies including models and computational algorithms.
- Atmospheric spectroscopy.
- Theoretical and experimental aspects of light scattering.
- Application of light scattering in particle characterization and remote sensing.
- Application of light scattering in biological sciences and medicine.
- Radiative transfer in absorbing, emitting, and scattering media.
- Radiative transfer in stochastic media.