V. Devaki , Madan Kumar Lakshmanan , R. Aravindan , V.E. Dhandapani , T. Jayanthi
{"title":"利用多谱段光电血压计对心房颤动进行连续心率监测","authors":"V. Devaki , Madan Kumar Lakshmanan , R. Aravindan , V.E. Dhandapani , T. Jayanthi","doi":"10.1016/j.sna.2024.116008","DOIUrl":null,"url":null,"abstract":"<div><div>Heart attacks and strokes account for more than four out of every five Cardiovascular Disease (CVD) deaths, with one-third occurring before age 70 years. Atrial fibrillation (AF), a common cause of ischemic strokes, can significantly reduce mortality rates through continuous monitoring, timely diagnosis, accurate confirmation, and early prognosis. This can be achieved by employing Multi-Spectral Photoplethysmography (MSPPG) technology as an alternative diagnostic tool to Electrocardiography (ECG). This investigation is implemented by determining the Heart Rate (HR) of AF-affected patients using a developed MSPPG-based wrist-worn device, keeping ECG as a standard gold reference. The Multispectral-based wrist-worn wearable Photoplethysmography device employs an optical bio-sensing, integrated BIOFY sensor to acquire the MSPPG signals using two green (526 nm), one red (660 nm) and one infrared (950 nm) LED and two photodetectors (Broadband detector, IR-cut detector). The MSPPG signals acquired using a microcontroller unit are stored in an On-device storage system simultaneously in the IoT Platform. Statistical analysis techniques were employed to compare the HR detected using the MSPPG technique with the HR measured from the gold-standard ECG. The accuracy paves the way for implementing the proposed MSPPG technology in detecting AF conditions in terms of HR, further laying the foundation for earlier detection of AF. Wearable PPG-based devices face a significant issue of motion artifacts that can be overcome using the MSPPG technique. The research advancements can potentially increase the accessibility of HR monitoring in AF patients, conveniently integrating into daily routines without restricting day-to-day activities.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"380 ","pages":"Article 116008"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous heart rate monitoring in atrial fibrillation with multispectral photoplethysmography\",\"authors\":\"V. Devaki , Madan Kumar Lakshmanan , R. Aravindan , V.E. Dhandapani , T. Jayanthi\",\"doi\":\"10.1016/j.sna.2024.116008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heart attacks and strokes account for more than four out of every five Cardiovascular Disease (CVD) deaths, with one-third occurring before age 70 years. Atrial fibrillation (AF), a common cause of ischemic strokes, can significantly reduce mortality rates through continuous monitoring, timely diagnosis, accurate confirmation, and early prognosis. This can be achieved by employing Multi-Spectral Photoplethysmography (MSPPG) technology as an alternative diagnostic tool to Electrocardiography (ECG). This investigation is implemented by determining the Heart Rate (HR) of AF-affected patients using a developed MSPPG-based wrist-worn device, keeping ECG as a standard gold reference. The Multispectral-based wrist-worn wearable Photoplethysmography device employs an optical bio-sensing, integrated BIOFY sensor to acquire the MSPPG signals using two green (526 nm), one red (660 nm) and one infrared (950 nm) LED and two photodetectors (Broadband detector, IR-cut detector). The MSPPG signals acquired using a microcontroller unit are stored in an On-device storage system simultaneously in the IoT Platform. Statistical analysis techniques were employed to compare the HR detected using the MSPPG technique with the HR measured from the gold-standard ECG. The accuracy paves the way for implementing the proposed MSPPG technology in detecting AF conditions in terms of HR, further laying the foundation for earlier detection of AF. Wearable PPG-based devices face a significant issue of motion artifacts that can be overcome using the MSPPG technique. The research advancements can potentially increase the accessibility of HR monitoring in AF patients, conveniently integrating into daily routines without restricting day-to-day activities.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"380 \",\"pages\":\"Article 116008\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724010021\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724010021","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Continuous heart rate monitoring in atrial fibrillation with multispectral photoplethysmography
Heart attacks and strokes account for more than four out of every five Cardiovascular Disease (CVD) deaths, with one-third occurring before age 70 years. Atrial fibrillation (AF), a common cause of ischemic strokes, can significantly reduce mortality rates through continuous monitoring, timely diagnosis, accurate confirmation, and early prognosis. This can be achieved by employing Multi-Spectral Photoplethysmography (MSPPG) technology as an alternative diagnostic tool to Electrocardiography (ECG). This investigation is implemented by determining the Heart Rate (HR) of AF-affected patients using a developed MSPPG-based wrist-worn device, keeping ECG as a standard gold reference. The Multispectral-based wrist-worn wearable Photoplethysmography device employs an optical bio-sensing, integrated BIOFY sensor to acquire the MSPPG signals using two green (526 nm), one red (660 nm) and one infrared (950 nm) LED and two photodetectors (Broadband detector, IR-cut detector). The MSPPG signals acquired using a microcontroller unit are stored in an On-device storage system simultaneously in the IoT Platform. Statistical analysis techniques were employed to compare the HR detected using the MSPPG technique with the HR measured from the gold-standard ECG. The accuracy paves the way for implementing the proposed MSPPG technology in detecting AF conditions in terms of HR, further laying the foundation for earlier detection of AF. Wearable PPG-based devices face a significant issue of motion artifacts that can be overcome using the MSPPG technique. The research advancements can potentially increase the accessibility of HR monitoring in AF patients, conveniently integrating into daily routines without restricting day-to-day activities.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...