{"title":"使用新型位移传感器测量高粘度的电磁渗透仪","authors":"Zakarya Abbassi , Amine Benabdellah , Mustapha Adar , Youssef Najih , Abdelrhani Nakheli","doi":"10.1016/j.sna.2024.116018","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we present an effective device for measuring the high viscosity of Newtonian liquids using a cylindrical penetrometer. The technique relies on monitoring the temporal evolution of penetration depth. Penetration depth is accurately determined by employing a novel electromagnetic micrometric displacement sensor, which is recorded and processed via a National Instruments DAQ card and a custom LabVIEW® program. The introduction of this new electromagnetic displacement sensor, characterized by its high accuracy and its stability, is imperative to ensure reliable measurements of high viscosity. This sensor enables direct, precise, and dependable digital depth of penetration readings. We validated this device by measuring the viscosity of Maltitol as a function of temperature, and the results demonstrate reasonable agreement with values found in the literature.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"380 ","pages":"Article 116018"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic penetrometer for high viscosity measurement using a new displacement sensor\",\"authors\":\"Zakarya Abbassi , Amine Benabdellah , Mustapha Adar , Youssef Najih , Abdelrhani Nakheli\",\"doi\":\"10.1016/j.sna.2024.116018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we present an effective device for measuring the high viscosity of Newtonian liquids using a cylindrical penetrometer. The technique relies on monitoring the temporal evolution of penetration depth. Penetration depth is accurately determined by employing a novel electromagnetic micrometric displacement sensor, which is recorded and processed via a National Instruments DAQ card and a custom LabVIEW® program. The introduction of this new electromagnetic displacement sensor, characterized by its high accuracy and its stability, is imperative to ensure reliable measurements of high viscosity. This sensor enables direct, precise, and dependable digital depth of penetration readings. We validated this device by measuring the viscosity of Maltitol as a function of temperature, and the results demonstrate reasonable agreement with values found in the literature.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"380 \",\"pages\":\"Article 116018\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724010124\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724010124","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Electromagnetic penetrometer for high viscosity measurement using a new displacement sensor
In this article, we present an effective device for measuring the high viscosity of Newtonian liquids using a cylindrical penetrometer. The technique relies on monitoring the temporal evolution of penetration depth. Penetration depth is accurately determined by employing a novel electromagnetic micrometric displacement sensor, which is recorded and processed via a National Instruments DAQ card and a custom LabVIEW® program. The introduction of this new electromagnetic displacement sensor, characterized by its high accuracy and its stability, is imperative to ensure reliable measurements of high viscosity. This sensor enables direct, precise, and dependable digital depth of penetration readings. We validated this device by measuring the viscosity of Maltitol as a function of temperature, and the results demonstrate reasonable agreement with values found in the literature.
期刊介绍:
Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas:
• Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results.
• Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon.
• Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays.
• Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers.
Etc...