Hassan Abbas Khawaja , Samaneh Keshavarzi , Adeel Yousuf , Manaf Muhammed , Muhammad Shakeel Virk , Derek Harvey , Gelareh Momen
{"title":"通过高速红外热成像探索冻结过冷水滴中的热传递","authors":"Hassan Abbas Khawaja , Samaneh Keshavarzi , Adeel Yousuf , Manaf Muhammed , Muhammad Shakeel Virk , Derek Harvey , Gelareh Momen","doi":"10.1016/j.coldregions.2024.104358","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the intricate heat transfer dynamics and thermographic patterns during the phase change from supercooled liquid water to ice. Using high-resolution, high-speed infrared thermography, real-time temperature data were captured during the freezing process. The resulting temperature profiles reveal critical insights into the freezing dynamics, particularly highlighting the rapid phenomena of recalescence in supercooled conditions. Notably, this study represents the first time recalescence, a rapid and previously elusive phenomenon, captured and documented in the scientific literature. Additionally, a mathematical model is developed to describe the recalescence phase on macro scale. These findings have practical relevance for various industries, aiding in the design of more efficient anti−/de-icing technologies, refrigeration systems, weather prediction models, and cryopreservation techniques. The study also opens new avenues for further exploration in understanding phase transitions in supercooled water.</div></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"229 ","pages":"Article 104358"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring heat transfer in freezing supercooled water droplet through high-speed infrared thermography\",\"authors\":\"Hassan Abbas Khawaja , Samaneh Keshavarzi , Adeel Yousuf , Manaf Muhammed , Muhammad Shakeel Virk , Derek Harvey , Gelareh Momen\",\"doi\":\"10.1016/j.coldregions.2024.104358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the intricate heat transfer dynamics and thermographic patterns during the phase change from supercooled liquid water to ice. Using high-resolution, high-speed infrared thermography, real-time temperature data were captured during the freezing process. The resulting temperature profiles reveal critical insights into the freezing dynamics, particularly highlighting the rapid phenomena of recalescence in supercooled conditions. Notably, this study represents the first time recalescence, a rapid and previously elusive phenomenon, captured and documented in the scientific literature. Additionally, a mathematical model is developed to describe the recalescence phase on macro scale. These findings have practical relevance for various industries, aiding in the design of more efficient anti−/de-icing technologies, refrigeration systems, weather prediction models, and cryopreservation techniques. The study also opens new avenues for further exploration in understanding phase transitions in supercooled water.</div></div>\",\"PeriodicalId\":10522,\"journal\":{\"name\":\"Cold Regions Science and Technology\",\"volume\":\"229 \",\"pages\":\"Article 104358\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cold Regions Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165232X24002398\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24002398","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Exploring heat transfer in freezing supercooled water droplet through high-speed infrared thermography
This study explores the intricate heat transfer dynamics and thermographic patterns during the phase change from supercooled liquid water to ice. Using high-resolution, high-speed infrared thermography, real-time temperature data were captured during the freezing process. The resulting temperature profiles reveal critical insights into the freezing dynamics, particularly highlighting the rapid phenomena of recalescence in supercooled conditions. Notably, this study represents the first time recalescence, a rapid and previously elusive phenomenon, captured and documented in the scientific literature. Additionally, a mathematical model is developed to describe the recalescence phase on macro scale. These findings have practical relevance for various industries, aiding in the design of more efficient anti−/de-icing technologies, refrigeration systems, weather prediction models, and cryopreservation techniques. The study also opens new avenues for further exploration in understanding phase transitions in supercooled water.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.