Qingyang Wu , Gen Li , Ming Liu , Yufeng Zhang , Junjie Yan , Yoshihiro Deguchi
{"title":"提高基于核能的水电联合装置的一次频率调节能力:动态建模与控制策略优化","authors":"Qingyang Wu , Gen Li , Ming Liu , Yufeng Zhang , Junjie Yan , Yoshihiro Deguchi","doi":"10.1016/j.energy.2024.133721","DOIUrl":null,"url":null,"abstract":"<div><div>The combined water and power plant based on nuclear energy (CWPN) is a potential way with significant economic and environmental benefits. To accommodate high penetration of intermittent renewable power within the power grid, it is essential to enhance the primary frequency regulation (PFR) ability of CWPN, and many factors, including the reactor operation safety, energy efficiency, and the water-power coupling mechanism of CWPN should be considered. In this study, a dynamic model of CWPN was developed, and two new strategies, the constant turbine power method (CPM) and the classic-PI-decoupling method (CDM), were proposed to enhance PFR capability. The results show that both strategies maintain the reactor power at full load during PFR, with CDM providing superior control, as evidenced by a maximum overshoot of 0.56 % compared with 3.58 % for CPM. Under typical step disturbances of ±1 % full power (FP), ±2%FP, and ±3%FP, the PFR performance of the original and new strategies was evaluated on the basis of settling time and the apex/nadir frequency. Compared with the original strategy (OS), the maximum settling time under CDM and CPM was reduced by 3.3 s and 8.8 s, respectively. The proposed strategies demonstrated improved PFR performance, with smaller apex/nadir frequency values than those of the OS.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"313 ","pages":"Article 133721"},"PeriodicalIF":9.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The enhancement of primary frequency regulation ability of combined water and power plant based on nuclear energy: Dynamic modelling and control strategy optimization\",\"authors\":\"Qingyang Wu , Gen Li , Ming Liu , Yufeng Zhang , Junjie Yan , Yoshihiro Deguchi\",\"doi\":\"10.1016/j.energy.2024.133721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The combined water and power plant based on nuclear energy (CWPN) is a potential way with significant economic and environmental benefits. To accommodate high penetration of intermittent renewable power within the power grid, it is essential to enhance the primary frequency regulation (PFR) ability of CWPN, and many factors, including the reactor operation safety, energy efficiency, and the water-power coupling mechanism of CWPN should be considered. In this study, a dynamic model of CWPN was developed, and two new strategies, the constant turbine power method (CPM) and the classic-PI-decoupling method (CDM), were proposed to enhance PFR capability. The results show that both strategies maintain the reactor power at full load during PFR, with CDM providing superior control, as evidenced by a maximum overshoot of 0.56 % compared with 3.58 % for CPM. Under typical step disturbances of ±1 % full power (FP), ±2%FP, and ±3%FP, the PFR performance of the original and new strategies was evaluated on the basis of settling time and the apex/nadir frequency. Compared with the original strategy (OS), the maximum settling time under CDM and CPM was reduced by 3.3 s and 8.8 s, respectively. The proposed strategies demonstrated improved PFR performance, with smaller apex/nadir frequency values than those of the OS.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"313 \",\"pages\":\"Article 133721\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544224034996\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544224034996","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
The enhancement of primary frequency regulation ability of combined water and power plant based on nuclear energy: Dynamic modelling and control strategy optimization
The combined water and power plant based on nuclear energy (CWPN) is a potential way with significant economic and environmental benefits. To accommodate high penetration of intermittent renewable power within the power grid, it is essential to enhance the primary frequency regulation (PFR) ability of CWPN, and many factors, including the reactor operation safety, energy efficiency, and the water-power coupling mechanism of CWPN should be considered. In this study, a dynamic model of CWPN was developed, and two new strategies, the constant turbine power method (CPM) and the classic-PI-decoupling method (CDM), were proposed to enhance PFR capability. The results show that both strategies maintain the reactor power at full load during PFR, with CDM providing superior control, as evidenced by a maximum overshoot of 0.56 % compared with 3.58 % for CPM. Under typical step disturbances of ±1 % full power (FP), ±2%FP, and ±3%FP, the PFR performance of the original and new strategies was evaluated on the basis of settling time and the apex/nadir frequency. Compared with the original strategy (OS), the maximum settling time under CDM and CPM was reduced by 3.3 s and 8.8 s, respectively. The proposed strategies demonstrated improved PFR performance, with smaller apex/nadir frequency values than those of the OS.
期刊介绍:
Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics.
The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management.
Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.