双臂机器人苹果收获系统的开发与评估

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2024-11-14 DOI:10.1016/j.compag.2024.109586
Kyle Lammers , Kaixiang Zhang , Keyi Zhu , Pengyu Chu , Zhaojian Li , Renfu Lu
{"title":"双臂机器人苹果收获系统的开发与评估","authors":"Kyle Lammers ,&nbsp;Kaixiang Zhang ,&nbsp;Keyi Zhu ,&nbsp;Pengyu Chu ,&nbsp;Zhaojian Li ,&nbsp;Renfu Lu","doi":"10.1016/j.compag.2024.109586","DOIUrl":null,"url":null,"abstract":"<div><div>Harvesting labor is the single largest cost in apple production in the U.S. Increased cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this paper, we present the development and evaluation of a new dual-arm robotic apple harvesting system. The system hardware mainly consists of a perception component, two four-degree-of-freedom manipulators, a centralized vacuum system, and a fruit handling and bin filling component designed for the collection and transportation of picked fruits. Synergistic functionalities for automated apple harvesting were achieved through the development of software algorithms. In particular, an updated perception system based on dual-laser scanning was proposed to enable sequential localization of apples for the dual-arm robotic system. A sophisticated planning scheme was devised to coordinate the movement of the two manipulators, allowing them to approach the fruit effectively and share a centralized vacuum system for efficient fruit detachment. The robotic system has been evaluated through field trials in a challenging apple orchard with complex, dense canopy, and it achieved 60% successful picking rate. The dual-arm coordination algorithm resulted in 9% to 34% harvest time improvements, compared to the 1-arm robotic system design. The new dual-arm robotic system is compact in design and dexterous in movement, and with further improvements in hardware and software, it holds great potential for providing a commercially viable harvesting automation solution for the apple industry</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"227 ","pages":"Article 109586"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and evaluation of a dual-arm robotic apple harvesting system\",\"authors\":\"Kyle Lammers ,&nbsp;Kaixiang Zhang ,&nbsp;Keyi Zhu ,&nbsp;Pengyu Chu ,&nbsp;Zhaojian Li ,&nbsp;Renfu Lu\",\"doi\":\"10.1016/j.compag.2024.109586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Harvesting labor is the single largest cost in apple production in the U.S. Increased cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this paper, we present the development and evaluation of a new dual-arm robotic apple harvesting system. The system hardware mainly consists of a perception component, two four-degree-of-freedom manipulators, a centralized vacuum system, and a fruit handling and bin filling component designed for the collection and transportation of picked fruits. Synergistic functionalities for automated apple harvesting were achieved through the development of software algorithms. In particular, an updated perception system based on dual-laser scanning was proposed to enable sequential localization of apples for the dual-arm robotic system. A sophisticated planning scheme was devised to coordinate the movement of the two manipulators, allowing them to approach the fruit effectively and share a centralized vacuum system for efficient fruit detachment. The robotic system has been evaluated through field trials in a challenging apple orchard with complex, dense canopy, and it achieved 60% successful picking rate. The dual-arm coordination algorithm resulted in 9% to 34% harvest time improvements, compared to the 1-arm robotic system design. The new dual-arm robotic system is compact in design and dexterous in movement, and with further improvements in hardware and software, it holds great potential for providing a commercially viable harvesting automation solution for the apple industry</div></div>\",\"PeriodicalId\":50627,\"journal\":{\"name\":\"Computers and Electronics in Agriculture\",\"volume\":\"227 \",\"pages\":\"Article 109586\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Electronics in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168169924009773\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169924009773","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在美国,采收劳动力是苹果生产中最大的一项成本。成本的增加和劳动力的日益短缺迫使苹果产业寻求自动化采收解决方案。尽管近年来取得了长足的进步,但现有的机器人采收系统仍然达不到预期的性能,缺乏坚固性,效率低下或过于复杂,无法进行实际的商业部署。在本文中,我们介绍了新型双臂机器人苹果收获系统的开发和评估情况。系统硬件主要包括一个感知组件、两个四自由度机械手、一个集中式真空系统以及一个水果处理和装箱组件,设计用于收集和运输采摘的水果。通过软件算法的开发,实现了苹果自动采摘的协同功能。特别是,提出了基于双激光扫描的最新感知系统,以实现双臂机器人系统的苹果顺序定位。还设计了一个复杂的规划方案来协调两个机械手的运动,使它们能够有效地接近水果,并共用一个中央真空系统来高效地分离水果。该机器人系统已在一个具有复杂、密集树冠的苹果园进行了实地试验评估,其成功采摘率达到 60%。与单臂机器人系统设计相比,双臂协调算法使收获时间缩短了 9% 至 34%。新的双臂机器人系统设计紧凑,动作灵巧,随着硬件和软件的进一步改进,有望为苹果产业提供商业上可行的采摘自动化解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and evaluation of a dual-arm robotic apple harvesting system
Harvesting labor is the single largest cost in apple production in the U.S. Increased cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this paper, we present the development and evaluation of a new dual-arm robotic apple harvesting system. The system hardware mainly consists of a perception component, two four-degree-of-freedom manipulators, a centralized vacuum system, and a fruit handling and bin filling component designed for the collection and transportation of picked fruits. Synergistic functionalities for automated apple harvesting were achieved through the development of software algorithms. In particular, an updated perception system based on dual-laser scanning was proposed to enable sequential localization of apples for the dual-arm robotic system. A sophisticated planning scheme was devised to coordinate the movement of the two manipulators, allowing them to approach the fruit effectively and share a centralized vacuum system for efficient fruit detachment. The robotic system has been evaluated through field trials in a challenging apple orchard with complex, dense canopy, and it achieved 60% successful picking rate. The dual-arm coordination algorithm resulted in 9% to 34% harvest time improvements, compared to the 1-arm robotic system design. The new dual-arm robotic system is compact in design and dexterous in movement, and with further improvements in hardware and software, it holds great potential for providing a commercially viable harvesting automation solution for the apple industry
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Optimization and testing of a mechanical roller seeder based on DEM-MBD rice potting tray Development of plant phenotyping system using Pan Tilt Zoom camera and verification of its validity Human robot interaction for agricultural Tele-Operation, using virtual Reality: A feasibility study Corrigendum to “A chlorophyll-constrained semi-empirical model for estimating leaf area index using a red-edge vegetation index” [Comput. Electron. Agric. 220 (2024) 108891] Design and experiment of monitoring system for feed rate on sugarcane chopper harvester
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1