表面科学的百年演变,个人视角

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL Surface Science Pub Date : 2024-11-08 DOI:10.1016/j.susc.2024.122636
Miquel B. Salmeron, Xiao Zhao
{"title":"表面科学的百年演变,个人视角","authors":"Miquel B. Salmeron,&nbsp;Xiao Zhao","doi":"10.1016/j.susc.2024.122636","DOIUrl":null,"url":null,"abstract":"<div><div>Compared to the bulk, surfaces of materials usually exhibit unique chemical, structural and electronic properties due to their distinct interactions with the external phase, such as vacuum, gas, liquid or another solid. Breakthroughs in this field are typically driven by significant instrumental development. In this review we will highlight a few developments in surface science in the last 40 years, as well as the discoveries they brought to the scientific and engineering communities. These findings, together with relevant technical developments, enable a deeper understanding of phenomena critical to catalysis, energy conversion, and nanotechnology.</div></div>","PeriodicalId":22100,"journal":{"name":"Surface Science","volume":"752 ","pages":"Article 122636"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One century of evolution of surface science, a personal perspective\",\"authors\":\"Miquel B. Salmeron,&nbsp;Xiao Zhao\",\"doi\":\"10.1016/j.susc.2024.122636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Compared to the bulk, surfaces of materials usually exhibit unique chemical, structural and electronic properties due to their distinct interactions with the external phase, such as vacuum, gas, liquid or another solid. Breakthroughs in this field are typically driven by significant instrumental development. In this review we will highlight a few developments in surface science in the last 40 years, as well as the discoveries they brought to the scientific and engineering communities. These findings, together with relevant technical developments, enable a deeper understanding of phenomena critical to catalysis, energy conversion, and nanotechnology.</div></div>\",\"PeriodicalId\":22100,\"journal\":{\"name\":\"Surface Science\",\"volume\":\"752 \",\"pages\":\"Article 122636\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039602824001870\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039602824001870","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

与块体相比,材料表面由于与真空、气体、液体或另一种固体等外相的独特相互作用,通常表现出独特的化学、结构和电子特性。这一领域的突破通常是由重要仪器的发展推动的。在本综述中,我们将重点介绍过去 40 年中表面科学的一些发展,以及这些发展为科学和工程界带来的发现。这些发现以及相关的技术发展,使我们能够更深入地了解对催化、能源转换和纳米技术至关重要的现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
One century of evolution of surface science, a personal perspective
Compared to the bulk, surfaces of materials usually exhibit unique chemical, structural and electronic properties due to their distinct interactions with the external phase, such as vacuum, gas, liquid or another solid. Breakthroughs in this field are typically driven by significant instrumental development. In this review we will highlight a few developments in surface science in the last 40 years, as well as the discoveries they brought to the scientific and engineering communities. These findings, together with relevant technical developments, enable a deeper understanding of phenomena critical to catalysis, energy conversion, and nanotechnology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface Science
Surface Science 化学-物理:凝聚态物理
CiteScore
3.30
自引率
5.30%
发文量
137
审稿时长
25 days
期刊介绍: Surface Science is devoted to elucidating the fundamental aspects of chemistry and physics occurring at a wide range of surfaces and interfaces and to disseminating this knowledge fast. The journal welcomes a broad spectrum of topics, including but not limited to: • model systems (e.g. in Ultra High Vacuum) under well-controlled reactive conditions • nanoscale science and engineering, including manipulation of matter at the atomic/molecular scale and assembly phenomena • reactivity of surfaces as related to various applied areas including heterogeneous catalysis, chemistry at electrified interfaces, and semiconductors functionalization • phenomena at interfaces relevant to energy storage and conversion, and fuels production and utilization • surface reactivity for environmental protection and pollution remediation • interactions at surfaces of soft matter, including polymers and biomaterials. Both experimental and theoretical work, including modeling, is within the scope of the journal. Work published in Surface Science reaches a wide readership, from chemistry and physics to biology and materials science and engineering, providing an excellent forum for cross-fertilization of ideas and broad dissemination of scientific discoveries.
期刊最新文献
VS2/graphene heterostructures as cathode materials for sodium-sulfur batteries: A first-principles study Effect of alloying elements (Ti, Zn, Zr, Al) on the interfacial properties of Cu/Ni2Si: A DFT study Editorial Board Adsorbate-induced effects on the H− ion collisions with Na/Ag(111) and K/Ag(111) surfaces One century of evolution of surface science, a personal perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1