MIAN:带有转移学习功能的多头不协调感知注意力网络,用于讽刺语言检测

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2024-11-09 DOI:10.1016/j.eswa.2024.125702
Xin Guan , Jiuxin Cao , Hui Zhang , Biwei Cao , Bo Liu
{"title":"MIAN:带有转移学习功能的多头不协调感知注意力网络,用于讽刺语言检测","authors":"Xin Guan ,&nbsp;Jiuxin Cao ,&nbsp;Hui Zhang ,&nbsp;Biwei Cao ,&nbsp;Bo Liu","doi":"10.1016/j.eswa.2024.125702","DOIUrl":null,"url":null,"abstract":"<div><div>Sarcasm is a common rhetorical metaphor in social media platforms, that individuals express emotion contrary to the literal meaning. Capturing the incongruity in the texts is the critical factor in sarcasm detection. Although several studies have looked at the incongruity of a single text, there is currently a lack of studies on modeling the incongruity of contextual information. Inspired by <em>Multi-Head Attention</em> mechanism from Transformer, we propose a <em>Multi-head Incongruity Aware Attention Network</em>, which concentrates on both target semantic incongruity and contextual semantic incongruity. Specifically, we design a multi-head self-match network to capture target semantic incongruity in a single text. Moreover, a multi-head co-match network is applied to model the contextual semantic incongruity. Furthermore, due to the scarcity of sarcasm data and considering the correlation between tasks of sentiment analysis and sarcasm detection, we pre-train the language model with a great amount of sentiment analysis data, which enhances its ability to capture sentimental features in the text. The experimental results demonstrate that our model achieves state-of-the-art performance on four benchmark datasets, with an accuracy gain of 3.8% on Tweets Ghost, 1.1% on SARC Pol, 1.9% on Ciron and an F1-Score gain of 0.3% on FigLang Twitter.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"263 ","pages":"Article 125702"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIAN: Multi-head Incongruity Aware Attention Network with transfer learning for sarcasm detection\",\"authors\":\"Xin Guan ,&nbsp;Jiuxin Cao ,&nbsp;Hui Zhang ,&nbsp;Biwei Cao ,&nbsp;Bo Liu\",\"doi\":\"10.1016/j.eswa.2024.125702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sarcasm is a common rhetorical metaphor in social media platforms, that individuals express emotion contrary to the literal meaning. Capturing the incongruity in the texts is the critical factor in sarcasm detection. Although several studies have looked at the incongruity of a single text, there is currently a lack of studies on modeling the incongruity of contextual information. Inspired by <em>Multi-Head Attention</em> mechanism from Transformer, we propose a <em>Multi-head Incongruity Aware Attention Network</em>, which concentrates on both target semantic incongruity and contextual semantic incongruity. Specifically, we design a multi-head self-match network to capture target semantic incongruity in a single text. Moreover, a multi-head co-match network is applied to model the contextual semantic incongruity. Furthermore, due to the scarcity of sarcasm data and considering the correlation between tasks of sentiment analysis and sarcasm detection, we pre-train the language model with a great amount of sentiment analysis data, which enhances its ability to capture sentimental features in the text. The experimental results demonstrate that our model achieves state-of-the-art performance on four benchmark datasets, with an accuracy gain of 3.8% on Tweets Ghost, 1.1% on SARC Pol, 1.9% on Ciron and an F1-Score gain of 0.3% on FigLang Twitter.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"263 \",\"pages\":\"Article 125702\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424025697\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025697","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

讽刺是社交媒体平台中一种常见的修辞隐喻,个人表达的情感与字面意思相反。捕捉文本中的不一致性是讽刺检测的关键因素。虽然已有一些研究关注了单个文本的不一致性,但目前还缺乏对上下文信息不一致性建模的研究。受 Transformer 多头注意机制的启发,我们提出了一种多头不协调意识注意网络,该网络同时关注目标语义不协调和上下文语义不协调。具体来说,我们设计了一个多头自匹配网络来捕捉单篇文本中的目标语义不一致。此外,我们还采用了多头共匹配网络来建立上下文语义不一致的模型。此外,由于讽刺数据的稀缺性,并考虑到情感分析和讽刺检测任务之间的相关性,我们使用大量情感分析数据对语言模型进行了预训练,从而增强了其捕捉文本中情感特征的能力。实验结果表明,我们的模型在四个基准数据集上取得了一流的性能,在 Tweets Ghost 上的准确率提高了 3.8%,在 SARC Pol 上提高了 1.1%,在 Ciron 上提高了 1.9%,在 FigLang Twitter 上的 F1 分数提高了 0.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MIAN: Multi-head Incongruity Aware Attention Network with transfer learning for sarcasm detection
Sarcasm is a common rhetorical metaphor in social media platforms, that individuals express emotion contrary to the literal meaning. Capturing the incongruity in the texts is the critical factor in sarcasm detection. Although several studies have looked at the incongruity of a single text, there is currently a lack of studies on modeling the incongruity of contextual information. Inspired by Multi-Head Attention mechanism from Transformer, we propose a Multi-head Incongruity Aware Attention Network, which concentrates on both target semantic incongruity and contextual semantic incongruity. Specifically, we design a multi-head self-match network to capture target semantic incongruity in a single text. Moreover, a multi-head co-match network is applied to model the contextual semantic incongruity. Furthermore, due to the scarcity of sarcasm data and considering the correlation between tasks of sentiment analysis and sarcasm detection, we pre-train the language model with a great amount of sentiment analysis data, which enhances its ability to capture sentimental features in the text. The experimental results demonstrate that our model achieves state-of-the-art performance on four benchmark datasets, with an accuracy gain of 3.8% on Tweets Ghost, 1.1% on SARC Pol, 1.9% on Ciron and an F1-Score gain of 0.3% on FigLang Twitter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Towards optimal control of HPV model using safe reinforcement learning with actor–critic neural networks Deep hashing with mutual information: A comprehensive strategy for image retrieval Maximizing failure occurrence in water distribution Systems: A Multi-Objective approach considering Reliability, Economic, and environmental aspects Multi-objective grey wolf optimizer based on reinforcement learning for distributed hybrid flowshop scheduling towards mass personalized manufacturing Multi-Context enhanced Lane-Changing prediction using a heterogeneous Graph Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1