{"title":"三峡库区小流域养殖池塘沉积物中磷迁移过程及驱动机制","authors":"Yifan Zhao, Wei Zhang, Weihua Zhang","doi":"10.1016/j.ecolind.2024.112787","DOIUrl":null,"url":null,"abstract":"<div><div>The water quality health of the farm ponds in the small watersheds of the Three Gorges Reservoir Area is critical to maintaining agricultural productivity. The main challenge in managing the water quality is predicting and controlling the release of total phosphorus (TP) from endogenous pollution in the substrate. Numerous studies have shown that endogenous pollution release from large water bodies like lakes is influenced by factors such as temperature and pH. However, knowledge about the response mechanisms in smaller water bodies, such as farm ponds, is still lacking. This study focuses on TP, using indoor simulation tests and orthogonal tests to investigate the transport and transformation of TP in four representative farm ponds located in Ruxi Town, at the heart of the Three Gorges Reservoir Area. Results showed that seasonal variations led to temperature changes thereby significantly affect TP release, with the highest release rates occurring in summer when the temperature was highest. The farm ponds demonstrated a significant annual cycle in phosphorus source-sink dynamics. Furthermore, factors including pH and water depth influenced the release rates; acidic conditions promoted phosphorus release from the substrate more effectively than alkaline conditions. Additionally, disturbances at lower intensities were observed to inhibit TP release. Building on these findings, this study further explored the advantages and limitations of using multiple regression analysis and BP Neural Network models for modeling phosphorus release and predicting annual TP release. Ultimately, the study proposes measures to reduce and control endogenous pollution, laying a foundation for managing eutrophication and protecting aquatic health in farm ponds.</div></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":"169 ","pages":"Article 112787"},"PeriodicalIF":7.0000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phosphorus transport process and driving mechanism in the sediment of farm ponds in small watersheds of three Gorges Reservoir area\",\"authors\":\"Yifan Zhao, Wei Zhang, Weihua Zhang\",\"doi\":\"10.1016/j.ecolind.2024.112787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The water quality health of the farm ponds in the small watersheds of the Three Gorges Reservoir Area is critical to maintaining agricultural productivity. The main challenge in managing the water quality is predicting and controlling the release of total phosphorus (TP) from endogenous pollution in the substrate. Numerous studies have shown that endogenous pollution release from large water bodies like lakes is influenced by factors such as temperature and pH. However, knowledge about the response mechanisms in smaller water bodies, such as farm ponds, is still lacking. This study focuses on TP, using indoor simulation tests and orthogonal tests to investigate the transport and transformation of TP in four representative farm ponds located in Ruxi Town, at the heart of the Three Gorges Reservoir Area. Results showed that seasonal variations led to temperature changes thereby significantly affect TP release, with the highest release rates occurring in summer when the temperature was highest. The farm ponds demonstrated a significant annual cycle in phosphorus source-sink dynamics. Furthermore, factors including pH and water depth influenced the release rates; acidic conditions promoted phosphorus release from the substrate more effectively than alkaline conditions. Additionally, disturbances at lower intensities were observed to inhibit TP release. Building on these findings, this study further explored the advantages and limitations of using multiple regression analysis and BP Neural Network models for modeling phosphorus release and predicting annual TP release. Ultimately, the study proposes measures to reduce and control endogenous pollution, laying a foundation for managing eutrophication and protecting aquatic health in farm ponds.</div></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":\"169 \",\"pages\":\"Article 112787\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24012445\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24012445","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Phosphorus transport process and driving mechanism in the sediment of farm ponds in small watersheds of three Gorges Reservoir area
The water quality health of the farm ponds in the small watersheds of the Three Gorges Reservoir Area is critical to maintaining agricultural productivity. The main challenge in managing the water quality is predicting and controlling the release of total phosphorus (TP) from endogenous pollution in the substrate. Numerous studies have shown that endogenous pollution release from large water bodies like lakes is influenced by factors such as temperature and pH. However, knowledge about the response mechanisms in smaller water bodies, such as farm ponds, is still lacking. This study focuses on TP, using indoor simulation tests and orthogonal tests to investigate the transport and transformation of TP in four representative farm ponds located in Ruxi Town, at the heart of the Three Gorges Reservoir Area. Results showed that seasonal variations led to temperature changes thereby significantly affect TP release, with the highest release rates occurring in summer when the temperature was highest. The farm ponds demonstrated a significant annual cycle in phosphorus source-sink dynamics. Furthermore, factors including pH and water depth influenced the release rates; acidic conditions promoted phosphorus release from the substrate more effectively than alkaline conditions. Additionally, disturbances at lower intensities were observed to inhibit TP release. Building on these findings, this study further explored the advantages and limitations of using multiple regression analysis and BP Neural Network models for modeling phosphorus release and predicting annual TP release. Ultimately, the study proposes measures to reduce and control endogenous pollution, laying a foundation for managing eutrophication and protecting aquatic health in farm ponds.
期刊介绍:
The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published.
• All aspects of ecological and environmental indicators and indices.
• New indicators, and new approaches and methods for indicator development, testing and use.
• Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources.
• Analysis and research of resource, system- and scale-specific indicators.
• Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs.
• How research indicators can be transformed into direct application for management purposes.
• Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators.
• Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.