Yonghui An , Shilong Ni , Ranting Cui , Jinping Ou
{"title":"利用自相关矩阵对角线加载的最小方差无失真响应波束成形的新型圆形相控阵损伤定位方法","authors":"Yonghui An , Shilong Ni , Ranting Cui , Jinping Ou","doi":"10.1016/j.ndteint.2024.103267","DOIUrl":null,"url":null,"abstract":"<div><div>Damage localization methods based on Acoustic Emission (AE) can be classified into time-based and waveform-based. However, the former requires a large number of sensors while the latter is limited to 2D plane localization. In order to address the challenge of achieving more accurate 3D localization using a reduced number of sensors, this paper proposes a Circular Phased Array using Minimum Variance Distortionless Response (MVDR) Beamforming with Autocorrelation Matrix Diagonal Loading (AMDL) method. Firstly, a sparse circular array is utilized to form multiple beamforming for coherent shear wave signals, decomposing the original 3D localization problem into Direction Of Arrival (DOA) estimation. Secondly, azimuth angle, elevation angle and autocorrelation matrix diagonal loading methods are introduced, working in conjunction with the MVDR beamforming algorithm. Finally, spatial integration is performed through matrix decomposition to solve geometric overdetermined equations. The effectiveness of the proposed method is validated through numerical simulations and experimental verifications under various damage conditions. Results indicate that estimation errors for azimuth and elevation angles are both less than 2 %, while 3D damage source localization errors remain within a range of less than 3 %. This proposed method extends beamforming technology from 2D plane localization to 3D localization, significantly reducing the complexity of sensor arrangement and lowering the cost of structural health monitoring systems by utilizing a small number of sensors.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"149 ","pages":"Article 103267"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel damage localization method of Circular Phased Array using Minimum Variance Distortionless Response Beamforming with Autocorrelation Matrix Diagonal Loading\",\"authors\":\"Yonghui An , Shilong Ni , Ranting Cui , Jinping Ou\",\"doi\":\"10.1016/j.ndteint.2024.103267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Damage localization methods based on Acoustic Emission (AE) can be classified into time-based and waveform-based. However, the former requires a large number of sensors while the latter is limited to 2D plane localization. In order to address the challenge of achieving more accurate 3D localization using a reduced number of sensors, this paper proposes a Circular Phased Array using Minimum Variance Distortionless Response (MVDR) Beamforming with Autocorrelation Matrix Diagonal Loading (AMDL) method. Firstly, a sparse circular array is utilized to form multiple beamforming for coherent shear wave signals, decomposing the original 3D localization problem into Direction Of Arrival (DOA) estimation. Secondly, azimuth angle, elevation angle and autocorrelation matrix diagonal loading methods are introduced, working in conjunction with the MVDR beamforming algorithm. Finally, spatial integration is performed through matrix decomposition to solve geometric overdetermined equations. The effectiveness of the proposed method is validated through numerical simulations and experimental verifications under various damage conditions. Results indicate that estimation errors for azimuth and elevation angles are both less than 2 %, while 3D damage source localization errors remain within a range of less than 3 %. This proposed method extends beamforming technology from 2D plane localization to 3D localization, significantly reducing the complexity of sensor arrangement and lowering the cost of structural health monitoring systems by utilizing a small number of sensors.</div></div>\",\"PeriodicalId\":18868,\"journal\":{\"name\":\"Ndt & E International\",\"volume\":\"149 \",\"pages\":\"Article 103267\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ndt & E International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0963869524002329\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869524002329","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
A novel damage localization method of Circular Phased Array using Minimum Variance Distortionless Response Beamforming with Autocorrelation Matrix Diagonal Loading
Damage localization methods based on Acoustic Emission (AE) can be classified into time-based and waveform-based. However, the former requires a large number of sensors while the latter is limited to 2D plane localization. In order to address the challenge of achieving more accurate 3D localization using a reduced number of sensors, this paper proposes a Circular Phased Array using Minimum Variance Distortionless Response (MVDR) Beamforming with Autocorrelation Matrix Diagonal Loading (AMDL) method. Firstly, a sparse circular array is utilized to form multiple beamforming for coherent shear wave signals, decomposing the original 3D localization problem into Direction Of Arrival (DOA) estimation. Secondly, azimuth angle, elevation angle and autocorrelation matrix diagonal loading methods are introduced, working in conjunction with the MVDR beamforming algorithm. Finally, spatial integration is performed through matrix decomposition to solve geometric overdetermined equations. The effectiveness of the proposed method is validated through numerical simulations and experimental verifications under various damage conditions. Results indicate that estimation errors for azimuth and elevation angles are both less than 2 %, while 3D damage source localization errors remain within a range of less than 3 %. This proposed method extends beamforming technology from 2D plane localization to 3D localization, significantly reducing the complexity of sensor arrangement and lowering the cost of structural health monitoring systems by utilizing a small number of sensors.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.