V. Chakkravarthy , P. Manojkumar , S. Jerome , S.A. Evlashin , Jinoop Arackal Narayanan , R.V. Mendagaliev , A.O. Sidorenko , R.L. Narayan
{"title":"冲击角对加砂水射流强化 Ti-6Al-4V 合金耐热腐蚀性的影响","authors":"V. Chakkravarthy , P. Manojkumar , S. Jerome , S.A. Evlashin , Jinoop Arackal Narayanan , R.V. Mendagaliev , A.O. Sidorenko , R.L. Narayan","doi":"10.1016/j.surfcoat.2024.131523","DOIUrl":null,"url":null,"abstract":"<div><div>The effect of peening angle (10° to 40°) on NaCl induced hot corrosion behavior of Ti-6Al-4V alloy was evaluated at 750 °C for 100 h. Peening at higher impact angles progressively increases the surface roughness, number of sub-grains, magnitude of compressive residual stresses and hardness of the alloy. During hot corrosion, the surfaces of Ti-6Al-4Al, irrespective of the peened condition, develops oxide scales that contain oxides of Ti, Al and V. Hot corrosion rate, measured in terms of rate of mass gain and the rate constant, <em>K</em><sub>p</sub>, was highest for the unpeened alloy but decreased for surfaces subjected to AWJ peening. Surfaces peened at increasing impact angles have smaller mass gain rate and the one peened at the impact angle of 30° exhibited the lowest corrosion rate and a lowest <em>K</em><sub>p</sub> of ∼0.08 mg<sup>2</sup>/cm<sup>4</sup>/h. The surface peened at 40° is, however, not as corrosion resistant. The mechanism of corrosion was discussed in the context of corrosion products formed and the opposing influences of initial roughness and compressive residual stresses. While higher roughness promotes hot corrosion by facilitating sites for corrosive attack, higher compressive residual stresses retard the diffusion of corrosive species into the Ti-6Al-4V surface. Based on these discussions, the optimum impact angle for AWJ peening for imparting maximum hot corrosion resistance on Ti-6Al-4V was determined to be ∼30°.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"494 ","pages":"Article 131523"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of impact angle on hot corrosion resistance of abrasive water jet peened Ti-6Al-4V alloy\",\"authors\":\"V. Chakkravarthy , P. Manojkumar , S. Jerome , S.A. Evlashin , Jinoop Arackal Narayanan , R.V. Mendagaliev , A.O. Sidorenko , R.L. Narayan\",\"doi\":\"10.1016/j.surfcoat.2024.131523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The effect of peening angle (10° to 40°) on NaCl induced hot corrosion behavior of Ti-6Al-4V alloy was evaluated at 750 °C for 100 h. Peening at higher impact angles progressively increases the surface roughness, number of sub-grains, magnitude of compressive residual stresses and hardness of the alloy. During hot corrosion, the surfaces of Ti-6Al-4Al, irrespective of the peened condition, develops oxide scales that contain oxides of Ti, Al and V. Hot corrosion rate, measured in terms of rate of mass gain and the rate constant, <em>K</em><sub>p</sub>, was highest for the unpeened alloy but decreased for surfaces subjected to AWJ peening. Surfaces peened at increasing impact angles have smaller mass gain rate and the one peened at the impact angle of 30° exhibited the lowest corrosion rate and a lowest <em>K</em><sub>p</sub> of ∼0.08 mg<sup>2</sup>/cm<sup>4</sup>/h. The surface peened at 40° is, however, not as corrosion resistant. The mechanism of corrosion was discussed in the context of corrosion products formed and the opposing influences of initial roughness and compressive residual stresses. While higher roughness promotes hot corrosion by facilitating sites for corrosive attack, higher compressive residual stresses retard the diffusion of corrosive species into the Ti-6Al-4V surface. Based on these discussions, the optimum impact angle for AWJ peening for imparting maximum hot corrosion resistance on Ti-6Al-4V was determined to be ∼30°.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"494 \",\"pages\":\"Article 131523\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S025789722401154X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S025789722401154X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Effect of impact angle on hot corrosion resistance of abrasive water jet peened Ti-6Al-4V alloy
The effect of peening angle (10° to 40°) on NaCl induced hot corrosion behavior of Ti-6Al-4V alloy was evaluated at 750 °C for 100 h. Peening at higher impact angles progressively increases the surface roughness, number of sub-grains, magnitude of compressive residual stresses and hardness of the alloy. During hot corrosion, the surfaces of Ti-6Al-4Al, irrespective of the peened condition, develops oxide scales that contain oxides of Ti, Al and V. Hot corrosion rate, measured in terms of rate of mass gain and the rate constant, Kp, was highest for the unpeened alloy but decreased for surfaces subjected to AWJ peening. Surfaces peened at increasing impact angles have smaller mass gain rate and the one peened at the impact angle of 30° exhibited the lowest corrosion rate and a lowest Kp of ∼0.08 mg2/cm4/h. The surface peened at 40° is, however, not as corrosion resistant. The mechanism of corrosion was discussed in the context of corrosion products formed and the opposing influences of initial roughness and compressive residual stresses. While higher roughness promotes hot corrosion by facilitating sites for corrosive attack, higher compressive residual stresses retard the diffusion of corrosive species into the Ti-6Al-4V surface. Based on these discussions, the optimum impact angle for AWJ peening for imparting maximum hot corrosion resistance on Ti-6Al-4V was determined to be ∼30°.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.