{"title":"用于多类型发电的多区域电力系统 AGC 的 mMSA-FOFPID 控制器","authors":"Dillip Khamari , Rabindra Kumar Sahu , Sidhartha Panda , Yogendra Arya","doi":"10.1016/j.suscom.2024.101046","DOIUrl":null,"url":null,"abstract":"<div><div>The exceptional growth in the penetration of renewable sources as well as complex and variable operating conditions of load demand in power system may jeopardize its operation without an appropriate automatic generation control (AGC) methodology. Hence, an intelligent resilient fractional order fuzzy PID (FOFPID) controlled AGC system is presented in this study. The parameters of controller are tuned utilizing a modified moth swarm algorithm (mMSA) inspired by the movement of moth towards moon light. At first, the effectiveness of the controller is verified on a nonlinear 5-area thermal power system. The simulation outcomes bring out that the suggested controller provides the best performance over the lately published strategies. In the subsequent step, the methodology is extended to a 5-area system having 10-units of power generations, namely thermal, hydro, wind, diesel, gas turbine with 2-units in each area. It is observed that mMSA based FOFPID is more effective related to other approaches. In order to establish the robustness of the controller, a sensitivity examination is executed. Then, experiments are conducted on OPAL-RT based real-time simulation to confirm the feasibility of the method. Finally, mMSA based FOFPID controller is observed superior than the recently published approaches for standard 2-area thermal and IEEE 10 generator 39 bus systems.</div></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"44 ","pages":"Article 101046"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mMSA-FOFPID controller for AGC of multi-area power system with multi-type generations\",\"authors\":\"Dillip Khamari , Rabindra Kumar Sahu , Sidhartha Panda , Yogendra Arya\",\"doi\":\"10.1016/j.suscom.2024.101046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The exceptional growth in the penetration of renewable sources as well as complex and variable operating conditions of load demand in power system may jeopardize its operation without an appropriate automatic generation control (AGC) methodology. Hence, an intelligent resilient fractional order fuzzy PID (FOFPID) controlled AGC system is presented in this study. The parameters of controller are tuned utilizing a modified moth swarm algorithm (mMSA) inspired by the movement of moth towards moon light. At first, the effectiveness of the controller is verified on a nonlinear 5-area thermal power system. The simulation outcomes bring out that the suggested controller provides the best performance over the lately published strategies. In the subsequent step, the methodology is extended to a 5-area system having 10-units of power generations, namely thermal, hydro, wind, diesel, gas turbine with 2-units in each area. It is observed that mMSA based FOFPID is more effective related to other approaches. In order to establish the robustness of the controller, a sensitivity examination is executed. Then, experiments are conducted on OPAL-RT based real-time simulation to confirm the feasibility of the method. Finally, mMSA based FOFPID controller is observed superior than the recently published approaches for standard 2-area thermal and IEEE 10 generator 39 bus systems.</div></div>\",\"PeriodicalId\":48686,\"journal\":{\"name\":\"Sustainable Computing-Informatics & Systems\",\"volume\":\"44 \",\"pages\":\"Article 101046\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Computing-Informatics & Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221053792400091X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221053792400091X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A mMSA-FOFPID controller for AGC of multi-area power system with multi-type generations
The exceptional growth in the penetration of renewable sources as well as complex and variable operating conditions of load demand in power system may jeopardize its operation without an appropriate automatic generation control (AGC) methodology. Hence, an intelligent resilient fractional order fuzzy PID (FOFPID) controlled AGC system is presented in this study. The parameters of controller are tuned utilizing a modified moth swarm algorithm (mMSA) inspired by the movement of moth towards moon light. At first, the effectiveness of the controller is verified on a nonlinear 5-area thermal power system. The simulation outcomes bring out that the suggested controller provides the best performance over the lately published strategies. In the subsequent step, the methodology is extended to a 5-area system having 10-units of power generations, namely thermal, hydro, wind, diesel, gas turbine with 2-units in each area. It is observed that mMSA based FOFPID is more effective related to other approaches. In order to establish the robustness of the controller, a sensitivity examination is executed. Then, experiments are conducted on OPAL-RT based real-time simulation to confirm the feasibility of the method. Finally, mMSA based FOFPID controller is observed superior than the recently published approaches for standard 2-area thermal and IEEE 10 generator 39 bus systems.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.