YOLO-ResTinyECG:基于心电图的轻量级嵌入式人工智能心律失常小目标检测器与剪枝方法

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Expert Systems with Applications Pub Date : 2024-11-04 DOI:10.1016/j.eswa.2024.125691
You-Liang Xie , Che-Wei Lin
{"title":"YOLO-ResTinyECG:基于心电图的轻量级嵌入式人工智能心律失常小目标检测器与剪枝方法","authors":"You-Liang Xie ,&nbsp;Che-Wei Lin","doi":"10.1016/j.eswa.2024.125691","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>This study presents a YOLO-ResTinyECG, a novel model for small object detection in electrocardiogram (ECG) images, emphasizing longer time-window lengths for improving the throughput of arrhythmia detection. <strong><em>Methods</em></strong>: The proposed ResTinyECG backbone consists of four-stage Res-blocks (2/4/3/2) with input ECG image sizes of 320 × 320 × 1 pixels and 160 × 160 × 1 pixels, with a significant parameter reduction of around 20 %/95 %/74 % compared to existing backbones like Shufflenet-v2/CSPDarknet53-tiny and the latest YOLOv7-tiny structure. Moreover, this study applied magnitude-based filter pruning and dependency graph (DepGraph) pruning for parameter optimization. The ECG images undergo processing with time-window lengths of 5/10/15/20 s, accompanied by min–max normalization, and weighted loss is applied for class balance during learning, and non-maximum suppression with edge removal is used to compute and select the final output bounding boxes of ECG heartbeats. <strong><em>Experiments</em></strong>: Experiments conducted on the PhysioNet MIT-BIH arrhythmia ECG database focus on nine classes, including normal (N), atrial premature beat (A), ventricular premature beat (V), left bundle branch block (L), right bundle branch block (R), fusion of ventricular beat (FVN), paced beat (P), fusion of paced and normal beat (FPN), and others (remaining heartbeats). <strong><em>Results</em></strong>: The proposed ResTinyECG-320 exhibits impressive mean Average Precision (mAP) scores of 94.76 %/94.85 %/93.96 %/87.12 % in 6-class detection and 92.35 %/91.96 %/90.58 %/83.34 % in 9-class detection across different time-window lengths. The model demonstrates only a marginal 7 %∼9% decrease in performance when utilizing longer time-window lengths. After applying magnitude-based filter pruning, ResTinyECG can be reduced to a minimal 0.1 million parameters. Furthermore, ResTinyECG-160 achieves a competitive mAP of 93.92 % in 6-class detection and a faster processing speed of 100.6 ECG segments per second (SPS) on a PC compared to Shufflenet-v2 (77.3 SPS). In conclusion, YOLO-ResTinyECG surpasses existing backbones, exhibiting superior mAP in both 6/9-class detection scenarios, and its deployment on an embedded AI platform validates its real-time detection capabilities.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"263 ","pages":"Article 125691"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOLO-ResTinyECG: ECG-based lightweight embedded AI arrhythmia small object detector with pruning methods\",\"authors\":\"You-Liang Xie ,&nbsp;Che-Wei Lin\",\"doi\":\"10.1016/j.eswa.2024.125691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>This study presents a YOLO-ResTinyECG, a novel model for small object detection in electrocardiogram (ECG) images, emphasizing longer time-window lengths for improving the throughput of arrhythmia detection. <strong><em>Methods</em></strong>: The proposed ResTinyECG backbone consists of four-stage Res-blocks (2/4/3/2) with input ECG image sizes of 320 × 320 × 1 pixels and 160 × 160 × 1 pixels, with a significant parameter reduction of around 20 %/95 %/74 % compared to existing backbones like Shufflenet-v2/CSPDarknet53-tiny and the latest YOLOv7-tiny structure. Moreover, this study applied magnitude-based filter pruning and dependency graph (DepGraph) pruning for parameter optimization. The ECG images undergo processing with time-window lengths of 5/10/15/20 s, accompanied by min–max normalization, and weighted loss is applied for class balance during learning, and non-maximum suppression with edge removal is used to compute and select the final output bounding boxes of ECG heartbeats. <strong><em>Experiments</em></strong>: Experiments conducted on the PhysioNet MIT-BIH arrhythmia ECG database focus on nine classes, including normal (N), atrial premature beat (A), ventricular premature beat (V), left bundle branch block (L), right bundle branch block (R), fusion of ventricular beat (FVN), paced beat (P), fusion of paced and normal beat (FPN), and others (remaining heartbeats). <strong><em>Results</em></strong>: The proposed ResTinyECG-320 exhibits impressive mean Average Precision (mAP) scores of 94.76 %/94.85 %/93.96 %/87.12 % in 6-class detection and 92.35 %/91.96 %/90.58 %/83.34 % in 9-class detection across different time-window lengths. The model demonstrates only a marginal 7 %∼9% decrease in performance when utilizing longer time-window lengths. After applying magnitude-based filter pruning, ResTinyECG can be reduced to a minimal 0.1 million parameters. Furthermore, ResTinyECG-160 achieves a competitive mAP of 93.92 % in 6-class detection and a faster processing speed of 100.6 ECG segments per second (SPS) on a PC compared to Shufflenet-v2 (77.3 SPS). In conclusion, YOLO-ResTinyECG surpasses existing backbones, exhibiting superior mAP in both 6/9-class detection scenarios, and its deployment on an embedded AI platform validates its real-time detection capabilities.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"263 \",\"pages\":\"Article 125691\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424025582\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025582","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究提出了一种用于检测心电图(ECG)图像中的小目标的新型模型 YOLO-ResTinyECG,强调通过延长时间窗口长度来提高心律失常检测的吞吐量。方法:与现有的 Shufflenet-v2/CSPDarknet53-tiny 和最新的 YOLOv7-tiny 结构等骨干网相比,ResTinyECG 骨干网的参数显著降低了约 20%/95%/74%。此外,这项研究还应用了基于幅度的滤波器剪枝和依赖图(DepGraph)剪枝来优化参数。心电图图像经过时间窗长度为 5/10/15/20 秒的处理,同时进行最小-最大归一化,在学习过程中应用加权损失进行类平衡,并使用非最大抑制和边缘去除来计算和选择心电图心搏的最终输出边界框。实验在 PhysioNet MIT-BIH 心律失常心电图数据库上进行的实验主要针对九个类别,包括正常(N)、房性早搏(A)、室性早搏(V)、左束支传导阻滞(L)、右束支传导阻滞(R)、心室搏动融合(FVN)、起搏(P)、起搏与正常搏动融合(FPN)以及其他(剩余心跳)。结果所提出的 ResTinyECG-320 在不同时间窗长度的 6 级检测中显示出令人印象深刻的平均精度 (mAP) 分数,分别为 94.76 %/94.85 %/93.96 %/87.12 %,在 9 级检测中显示出令人印象深刻的平均精度 (mAP) 分数,分别为 92.35 %/91.96 %/90.58 %/83.34 %。当使用更长的时间窗口长度时,该模型的性能仅略微下降 7%∼9%。在应用基于幅度的滤波器剪枝后,ResTinyECG 可以减少到最小的 0.1 百万个参数。此外,ResTinyECG-160 在 6 类检测中实现了 93.92 % 的具有竞争力的 mAP,与 Shufflenet-v2(77.3 SPS)相比,其在 PC 上的处理速度更快,达到每秒 100.6 个心电图片段 (SPS)。总之,YOLO-ResTinyECG 超越了现有的骨干网,在 6/9 级检测场景中都表现出了卓越的 mAP,其在嵌入式人工智能平台上的部署验证了其实时检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
YOLO-ResTinyECG: ECG-based lightweight embedded AI arrhythmia small object detector with pruning methods

Objective

This study presents a YOLO-ResTinyECG, a novel model for small object detection in electrocardiogram (ECG) images, emphasizing longer time-window lengths for improving the throughput of arrhythmia detection. Methods: The proposed ResTinyECG backbone consists of four-stage Res-blocks (2/4/3/2) with input ECG image sizes of 320 × 320 × 1 pixels and 160 × 160 × 1 pixels, with a significant parameter reduction of around 20 %/95 %/74 % compared to existing backbones like Shufflenet-v2/CSPDarknet53-tiny and the latest YOLOv7-tiny structure. Moreover, this study applied magnitude-based filter pruning and dependency graph (DepGraph) pruning for parameter optimization. The ECG images undergo processing with time-window lengths of 5/10/15/20 s, accompanied by min–max normalization, and weighted loss is applied for class balance during learning, and non-maximum suppression with edge removal is used to compute and select the final output bounding boxes of ECG heartbeats. Experiments: Experiments conducted on the PhysioNet MIT-BIH arrhythmia ECG database focus on nine classes, including normal (N), atrial premature beat (A), ventricular premature beat (V), left bundle branch block (L), right bundle branch block (R), fusion of ventricular beat (FVN), paced beat (P), fusion of paced and normal beat (FPN), and others (remaining heartbeats). Results: The proposed ResTinyECG-320 exhibits impressive mean Average Precision (mAP) scores of 94.76 %/94.85 %/93.96 %/87.12 % in 6-class detection and 92.35 %/91.96 %/90.58 %/83.34 % in 9-class detection across different time-window lengths. The model demonstrates only a marginal 7 %∼9% decrease in performance when utilizing longer time-window lengths. After applying magnitude-based filter pruning, ResTinyECG can be reduced to a minimal 0.1 million parameters. Furthermore, ResTinyECG-160 achieves a competitive mAP of 93.92 % in 6-class detection and a faster processing speed of 100.6 ECG segments per second (SPS) on a PC compared to Shufflenet-v2 (77.3 SPS). In conclusion, YOLO-ResTinyECG surpasses existing backbones, exhibiting superior mAP in both 6/9-class detection scenarios, and its deployment on an embedded AI platform validates its real-time detection capabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Expert Systems with Applications
Expert Systems with Applications 工程技术-工程:电子与电气
CiteScore
13.80
自引率
10.60%
发文量
2045
审稿时长
8.7 months
期刊介绍: Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.
期刊最新文献
Towards optimal control of HPV model using safe reinforcement learning with actor–critic neural networks Deep hashing with mutual information: A comprehensive strategy for image retrieval Maximizing failure occurrence in water distribution Systems: A Multi-Objective approach considering Reliability, Economic, and environmental aspects Multi-objective grey wolf optimizer based on reinforcement learning for distributed hybrid flowshop scheduling towards mass personalized manufacturing Multi-Context enhanced Lane-Changing prediction using a heterogeneous Graph Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1