MPTCP 调度器中的负载平衡参数盘点

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2024-11-09 DOI:10.1016/j.comnet.2024.110880
Mohamed Rabie Naimi , Chakib Zouaoui , Mohamed Elbahri , Abdenacer Bounoua
{"title":"MPTCP 调度器中的负载平衡参数盘点","authors":"Mohamed Rabie Naimi ,&nbsp;Chakib Zouaoui ,&nbsp;Mohamed Elbahri ,&nbsp;Abdenacer Bounoua","doi":"10.1016/j.comnet.2024.110880","DOIUrl":null,"url":null,"abstract":"<div><div>In the era of ubiquitous connectivity, where multiple wired and wireless interfaces connect internet users, we can now ensure the reliability of online services. Multi-Path TCP (MPTCP) significantly improves data transport efficiency by aggregating multiple network paths into a single session to optimize network resources use. MPTCP's effectiveness depends on its scheduling decisions, which directly affect data flow, throughput, and service quality. This work presents a first labeled dataset detailing critical MPTCP scheduling parameters—congestion window sizes, unacknowledged transmitted segments, and latency—from the most popular classic schedulers: RR (RoundRobin), BLEST (Blocking Estimation-based MPTCP Scheduler), and ECF(Earliest Completion First). It allows an in-depth study of different load-balancing policies, thus clarifying the complexity of schedulers and the impact of parameters used in each load-balancing policy on data transfer. With <strong>80033271</strong> rows extracted across <strong>15 scenarios</strong>, providing usable <strong>21</strong> numeric values per row, the objective of this dataset is to inventory all the decisive parameters in schedulers' decision-making. This dataset will not only facilitate the selection of optimal parameters for load-balancing policies, but also serve as a foundation for the development of numerous novel, supervised machine learning methods specifically tailored for scheduling tasks.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110880"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inventory of Load Balancing Parameters in MPTCP Schedulers\",\"authors\":\"Mohamed Rabie Naimi ,&nbsp;Chakib Zouaoui ,&nbsp;Mohamed Elbahri ,&nbsp;Abdenacer Bounoua\",\"doi\":\"10.1016/j.comnet.2024.110880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the era of ubiquitous connectivity, where multiple wired and wireless interfaces connect internet users, we can now ensure the reliability of online services. Multi-Path TCP (MPTCP) significantly improves data transport efficiency by aggregating multiple network paths into a single session to optimize network resources use. MPTCP's effectiveness depends on its scheduling decisions, which directly affect data flow, throughput, and service quality. This work presents a first labeled dataset detailing critical MPTCP scheduling parameters—congestion window sizes, unacknowledged transmitted segments, and latency—from the most popular classic schedulers: RR (RoundRobin), BLEST (Blocking Estimation-based MPTCP Scheduler), and ECF(Earliest Completion First). It allows an in-depth study of different load-balancing policies, thus clarifying the complexity of schedulers and the impact of parameters used in each load-balancing policy on data transfer. With <strong>80033271</strong> rows extracted across <strong>15 scenarios</strong>, providing usable <strong>21</strong> numeric values per row, the objective of this dataset is to inventory all the decisive parameters in schedulers' decision-making. This dataset will not only facilitate the selection of optimal parameters for load-balancing policies, but also serve as a foundation for the development of numerous novel, supervised machine learning methods specifically tailored for scheduling tasks.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"255 \",\"pages\":\"Article 110880\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624007126\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624007126","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在无处不在的连接时代,多个有线和无线接口将互联网用户连接起来,我们现在可以确保在线服务的可靠性。多路径 TCP(Multi-Path TCP,简称 MPTCP)通过将多个网络路径聚合到一个会话中来优化网络资源的使用,从而大大提高了数据传输效率。MPTCP 的有效性取决于其调度决策,而调度决策直接影响数据流、吞吐量和服务质量。这项研究首次提出了一个标签数据集,详细说明了最流行的经典调度器的关键 MPTCP 调度参数--拥塞窗口大小、未确认的传输段和延迟:RR(RoundRobin)、BLEST(基于阻塞估计的 MPTCP 调度器)和 ECF(Earliest Completion First)。通过它可以深入研究不同的负载平衡策略,从而明确调度程序的复杂性以及每种负载平衡策略中使用的参数对数据传输的影响。该数据集在 15 个方案中提取了 80033271 行,每行提供 21 个可用数值,其目的是清点调度器决策中的所有决定性参数。该数据集不仅有助于为负载平衡策略选择最佳参数,还为开发专门针对调度任务的多种新型监督机器学习方法奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inventory of Load Balancing Parameters in MPTCP Schedulers
In the era of ubiquitous connectivity, where multiple wired and wireless interfaces connect internet users, we can now ensure the reliability of online services. Multi-Path TCP (MPTCP) significantly improves data transport efficiency by aggregating multiple network paths into a single session to optimize network resources use. MPTCP's effectiveness depends on its scheduling decisions, which directly affect data flow, throughput, and service quality. This work presents a first labeled dataset detailing critical MPTCP scheduling parameters—congestion window sizes, unacknowledged transmitted segments, and latency—from the most popular classic schedulers: RR (RoundRobin), BLEST (Blocking Estimation-based MPTCP Scheduler), and ECF(Earliest Completion First). It allows an in-depth study of different load-balancing policies, thus clarifying the complexity of schedulers and the impact of parameters used in each load-balancing policy on data transfer. With 80033271 rows extracted across 15 scenarios, providing usable 21 numeric values per row, the objective of this dataset is to inventory all the decisive parameters in schedulers' decision-making. This dataset will not only facilitate the selection of optimal parameters for load-balancing policies, but also serve as a foundation for the development of numerous novel, supervised machine learning methods specifically tailored for scheduling tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
Performance modeling and comparison of URLLC and eMBB coexistence strategies in 5G new radio systems Integrating Unmanned Aerial Vehicles (UAVs) with Vehicular Ad-hoc NETworks (VANETs): Architectures, applications, opportunities Deep reinforcement learning for autonomous SideLink radio resource management in platoon-based C-V2X networks: An overview Robust and energy-efficient RPL optimization algorithm with scalable deep reinforcement learning for IIoT Privacy-preserving local clustering coefficient query on structured encrypted graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1