用于内流气化的生物质粉碎的特性分析

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING Biomass & Bioenergy Pub Date : 2024-11-07 DOI:10.1016/j.biombioe.2024.107478
Haifeng Lu, Yao Bian, Xiaolei Guo, Haifeng Liu
{"title":"用于内流气化的生物质粉碎的特性分析","authors":"Haifeng Lu,&nbsp;Yao Bian,&nbsp;Xiaolei Guo,&nbsp;Haifeng Liu","doi":"10.1016/j.biombioe.2024.107478","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass entrained-flow gasification is one of the most promising conversion technologies for biomass utilization, characterized by high conversion efficiency and environmental friendliness. As a booming technology, the selection of particle size in biomass entrained-flow gasification has been a key issue of concern but has not yet been resolved. In this paper, a hammer mill was used to comminute biomass into powders of various particle sizes; Typical biomass materials including rice husk, rice straw, wood chip, and chinar leaf were selected as experimental materials to analyze the comminuting characteristics of different biomasses. Different screen sizes (SS) ranging from 0.2 mm to 2 mm were utilized to investigate the influence of comminuting particle size. The influence of SS on the characteristics of biomass particles (particle size, particle shape) was analyzed. The characteristic particle size, represented by <em>d</em><sub>90</sub>, was extracted and found to exhibit a good linear relationship with the SS. It was confirmed that reducing the particle size effectively reduces the particle anisotropy. Furthermore, the bulking and flow characteristics of different particles was investigated. Despite the increase in bulk and tap densities with decreasing particle size, it is interesting to note that the flowability of the powder first improves and then weakens. Finally, the impact of SS on the comminution energy consumption was investigated and the Bond comminution constants were fitted for the four biomass tested.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"191 ","pages":"Article 107478"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of biomass comminution for entrained-flow gasification\",\"authors\":\"Haifeng Lu,&nbsp;Yao Bian,&nbsp;Xiaolei Guo,&nbsp;Haifeng Liu\",\"doi\":\"10.1016/j.biombioe.2024.107478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Biomass entrained-flow gasification is one of the most promising conversion technologies for biomass utilization, characterized by high conversion efficiency and environmental friendliness. As a booming technology, the selection of particle size in biomass entrained-flow gasification has been a key issue of concern but has not yet been resolved. In this paper, a hammer mill was used to comminute biomass into powders of various particle sizes; Typical biomass materials including rice husk, rice straw, wood chip, and chinar leaf were selected as experimental materials to analyze the comminuting characteristics of different biomasses. Different screen sizes (SS) ranging from 0.2 mm to 2 mm were utilized to investigate the influence of comminuting particle size. The influence of SS on the characteristics of biomass particles (particle size, particle shape) was analyzed. The characteristic particle size, represented by <em>d</em><sub>90</sub>, was extracted and found to exhibit a good linear relationship with the SS. It was confirmed that reducing the particle size effectively reduces the particle anisotropy. Furthermore, the bulking and flow characteristics of different particles was investigated. Despite the increase in bulk and tap densities with decreasing particle size, it is interesting to note that the flowability of the powder first improves and then weakens. Finally, the impact of SS on the comminution energy consumption was investigated and the Bond comminution constants were fitted for the four biomass tested.</div></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":\"191 \",\"pages\":\"Article 107478\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424004318\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424004318","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

生物质内流气化是生物质利用领域最有前途的转化技术之一,具有转化效率高和环境友好的特点。作为一项蓬勃发展的技术,生物质内流气化中粒度的选择一直是人们关注的关键问题,但至今尚未得到解决。本文使用锤式粉碎机将生物质粉碎成不同粒度的粉末;选取典型的生物质材料,包括稻壳、稻草、木屑和千层叶作为实验材料,分析不同生物质的粉碎特性。利用 0.2 毫米至 2 毫米的不同筛分尺寸(SS)来研究粉碎粒度的影响。分析了 SS 对生物质颗粒特性(粒度、粒形)的影响。提取了以 d90 为代表的特征粒度,发现其与 SS 呈良好的线性关系。研究证实,减小粒径可有效降低颗粒的各向异性。此外,还研究了不同颗粒的体积和流动特性。尽管随着颗粒尺寸的减小,体积密度和敲击密度都会增加,但值得注意的是,粉末的流动性先改善后减弱。最后,研究了 SS 对粉碎能耗的影响,并拟合了四种测试生物质的邦德粉碎常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of biomass comminution for entrained-flow gasification
Biomass entrained-flow gasification is one of the most promising conversion technologies for biomass utilization, characterized by high conversion efficiency and environmental friendliness. As a booming technology, the selection of particle size in biomass entrained-flow gasification has been a key issue of concern but has not yet been resolved. In this paper, a hammer mill was used to comminute biomass into powders of various particle sizes; Typical biomass materials including rice husk, rice straw, wood chip, and chinar leaf were selected as experimental materials to analyze the comminuting characteristics of different biomasses. Different screen sizes (SS) ranging from 0.2 mm to 2 mm were utilized to investigate the influence of comminuting particle size. The influence of SS on the characteristics of biomass particles (particle size, particle shape) was analyzed. The characteristic particle size, represented by d90, was extracted and found to exhibit a good linear relationship with the SS. It was confirmed that reducing the particle size effectively reduces the particle anisotropy. Furthermore, the bulking and flow characteristics of different particles was investigated. Despite the increase in bulk and tap densities with decreasing particle size, it is interesting to note that the flowability of the powder first improves and then weakens. Finally, the impact of SS on the comminution energy consumption was investigated and the Bond comminution constants were fitted for the four biomass tested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
期刊最新文献
Studying Gaussian deconvolution and multicomponent kinetics models in Agave cellulosic fibers pyrolysis: Application in sustainable bioenergy for cleaner production Assessment of long-lived Carbon permanence in agricultural soil: Unearthing 15 years-old biochar from long-term field experiment in vineyard Hydroprocessing of waste cooking oil to produce liquid fuels over Ni-Mo and Co-Mo supported on carbon nanotubes Improving in-situ biomethanation of sewage sludge under mesophilic conditions: Performance and microbial community analysis Improved bioethanol production from corn stover using microwave-assisted protic ionic liquid pretreatment and an engineered S. cerevisiae strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1