污水污泥和餐厨垃圾的共水热碳化:工艺参数的影响

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING Biomass & Bioenergy Pub Date : 2024-11-07 DOI:10.1016/j.biombioe.2024.107473
K. Rathika , Bholu Ram Yadav , Sunil Kumar
{"title":"污水污泥和餐厨垃圾的共水热碳化:工艺参数的影响","authors":"K. Rathika ,&nbsp;Bholu Ram Yadav ,&nbsp;Sunil Kumar","doi":"10.1016/j.biombioe.2024.107473","DOIUrl":null,"url":null,"abstract":"<div><div>This study assessed the impact of process temperature and time on the co-hydrothermal carbonisation (co-HTC) of kitchen waste and sewage sludge. To address the limitations of using a single feedstock and to circumvent the energy costs associated with pre-drying, the two organic feedstocks were mixed at a 1:1 ratio (wet basis). Co-HTC experimental runs were conducted in the temperature range of 180 °C–260 °C for 1, 3, and 5h durations. Co-HTC for sewage sludge and kitchen waste (1:1 ratio) at 260 °C temperature for 3h duration demonstrated optimal energy enrichment with a maximum energy and carbon densification of 1.50 and 1.47, respectively. The thermogravimetric analysis (TGA) revealed that the hydrochar (HC) produced at 260 °C temperature for 3h duration underwent multistage decomposition with stable intermediates due to the formation of more stable aromatic structures and a heat energy of 21.29 kJ g<sup>−1</sup> at 292.87 °C. At the optimal reaction conditions, the process water (PW) exhibited a high volatile fatty acids (VFA) and total kjeldahl nitrogen (TKN) concentration of 1420 mg L<sup>−1</sup> and 431.2 mg L<sup>−1</sup>, indicating its potential for simultaneous energy recovery through anaerobic digestion and nutrient recovery.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"191 ","pages":"Article 107473"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-hydrothermal carbonisation of sewage sludge and kitchen waste: Influence of process parameters\",\"authors\":\"K. Rathika ,&nbsp;Bholu Ram Yadav ,&nbsp;Sunil Kumar\",\"doi\":\"10.1016/j.biombioe.2024.107473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study assessed the impact of process temperature and time on the co-hydrothermal carbonisation (co-HTC) of kitchen waste and sewage sludge. To address the limitations of using a single feedstock and to circumvent the energy costs associated with pre-drying, the two organic feedstocks were mixed at a 1:1 ratio (wet basis). Co-HTC experimental runs were conducted in the temperature range of 180 °C–260 °C for 1, 3, and 5h durations. Co-HTC for sewage sludge and kitchen waste (1:1 ratio) at 260 °C temperature for 3h duration demonstrated optimal energy enrichment with a maximum energy and carbon densification of 1.50 and 1.47, respectively. The thermogravimetric analysis (TGA) revealed that the hydrochar (HC) produced at 260 °C temperature for 3h duration underwent multistage decomposition with stable intermediates due to the formation of more stable aromatic structures and a heat energy of 21.29 kJ g<sup>−1</sup> at 292.87 °C. At the optimal reaction conditions, the process water (PW) exhibited a high volatile fatty acids (VFA) and total kjeldahl nitrogen (TKN) concentration of 1420 mg L<sup>−1</sup> and 431.2 mg L<sup>−1</sup>, indicating its potential for simultaneous energy recovery through anaerobic digestion and nutrient recovery.</div></div>\",\"PeriodicalId\":253,\"journal\":{\"name\":\"Biomass & Bioenergy\",\"volume\":\"191 \",\"pages\":\"Article 107473\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomass & Bioenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0961953424004264\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424004264","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了工艺温度和时间对厨房垃圾和污水污泥共热碳化(co-HTC)的影响。为了解决使用单一原料的局限性,并规避与预干燥相关的能源成本,两种有机原料以 1:1 的比例(湿基)混合。在 180 °C-260 °C 的温度范围内进行了 1、3 和 5 小时的共热催化还原实验。污水污泥和餐厨垃圾(1:1 比例)在 260 °C 温度下持续 3 小时的共热硫化四氯化碳实验表明,能量富集效果最佳,最大能量密度和碳密度分别为 1.50 和 1.47。热重分析(TGA)显示,在 260 °C 温度下持续 3 小时产生的水碳(HC)经历了多级分解,由于形成了更稳定的芳香结构,中间产物稳定,在 292.87 °C 时的热能为 21.29 kJ g-1。在最佳反应条件下,工艺水(PW)显示出较高的挥发性脂肪酸(VFA)和总凯氏定氮(TKN)浓度,分别为 1420 mg L-1 和 431.2 mg L-1,表明其具有通过厌氧消化同时回收能量和营养物质的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-hydrothermal carbonisation of sewage sludge and kitchen waste: Influence of process parameters
This study assessed the impact of process temperature and time on the co-hydrothermal carbonisation (co-HTC) of kitchen waste and sewage sludge. To address the limitations of using a single feedstock and to circumvent the energy costs associated with pre-drying, the two organic feedstocks were mixed at a 1:1 ratio (wet basis). Co-HTC experimental runs were conducted in the temperature range of 180 °C–260 °C for 1, 3, and 5h durations. Co-HTC for sewage sludge and kitchen waste (1:1 ratio) at 260 °C temperature for 3h duration demonstrated optimal energy enrichment with a maximum energy and carbon densification of 1.50 and 1.47, respectively. The thermogravimetric analysis (TGA) revealed that the hydrochar (HC) produced at 260 °C temperature for 3h duration underwent multistage decomposition with stable intermediates due to the formation of more stable aromatic structures and a heat energy of 21.29 kJ g−1 at 292.87 °C. At the optimal reaction conditions, the process water (PW) exhibited a high volatile fatty acids (VFA) and total kjeldahl nitrogen (TKN) concentration of 1420 mg L−1 and 431.2 mg L−1, indicating its potential for simultaneous energy recovery through anaerobic digestion and nutrient recovery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
期刊最新文献
Studying Gaussian deconvolution and multicomponent kinetics models in Agave cellulosic fibers pyrolysis: Application in sustainable bioenergy for cleaner production Assessment of long-lived Carbon permanence in agricultural soil: Unearthing 15 years-old biochar from long-term field experiment in vineyard Hydroprocessing of waste cooking oil to produce liquid fuels over Ni-Mo and Co-Mo supported on carbon nanotubes Improving in-situ biomethanation of sewage sludge under mesophilic conditions: Performance and microbial community analysis Improved bioethanol production from corn stover using microwave-assisted protic ionic liquid pretreatment and an engineered S. cerevisiae strain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1