相变材料具有出色的热稳定性和机械强度,可用于电池热管理

IF 8.9 2区 工程技术 Q1 ENERGY & FUELS Journal of energy storage Pub Date : 2024-11-15 DOI:10.1016/j.est.2024.114565
Mingyi Chen, Yan Gong, Luyao Zhao, Yin Chen
{"title":"相变材料具有出色的热稳定性和机械强度,可用于电池热管理","authors":"Mingyi Chen,&nbsp;Yan Gong,&nbsp;Luyao Zhao,&nbsp;Yin Chen","doi":"10.1016/j.est.2024.114565","DOIUrl":null,"url":null,"abstract":"<div><div>Effective thermal management is crucial for the reliability and efficiency of various systems, yet conventional phase change materials encounter limitations. This research introduces a novel solid-solid phase change material (SSPCM) designed for superior leak resistance and mechanical integrity. The SSPCM is synthesized via a polyurethane cross-linking reaction, employing polyethylene glycol (PEG) and hexamethylene diisocyanate (HDI) as precursors. This method chemically integrates phase change molecular chains into a thermosetting polymer matrix via polyurethane bonds, effectively mitigating leakage issues prevalent in traditional PCM composites while enhancing thermal stability. To augment thermal conductivity, we engineered a hybrid heat transfer network incorporating expanded graphite (EG), carbon nanotubes (CNTs), and advanced ceramic materials, including boron nitride (BN) and silicon carbide (SiC). Experimental evaluations reveal that the SSPCM achieves exceptional leak-proof performance, mechanical durability, and a significant improvement in thermal conductivity—up to 0.95 W/mK, marking a 4.13-fold enhancement over baseline values. Crucially, the developed SSPCM demonstrates remarkable efficacy in temperature regulation, maintaining the operational temperature of lithium battery packs within the optimal range of 20–55 °C under a 3C discharge rate. The internal temperature variation is kept below 3 °C, showcasing the material's potential in improving thermal management systems' reliability and performance.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114565"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase change material with outstanding thermal stability and mechanical strength for battery thermal management\",\"authors\":\"Mingyi Chen,&nbsp;Yan Gong,&nbsp;Luyao Zhao,&nbsp;Yin Chen\",\"doi\":\"10.1016/j.est.2024.114565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Effective thermal management is crucial for the reliability and efficiency of various systems, yet conventional phase change materials encounter limitations. This research introduces a novel solid-solid phase change material (SSPCM) designed for superior leak resistance and mechanical integrity. The SSPCM is synthesized via a polyurethane cross-linking reaction, employing polyethylene glycol (PEG) and hexamethylene diisocyanate (HDI) as precursors. This method chemically integrates phase change molecular chains into a thermosetting polymer matrix via polyurethane bonds, effectively mitigating leakage issues prevalent in traditional PCM composites while enhancing thermal stability. To augment thermal conductivity, we engineered a hybrid heat transfer network incorporating expanded graphite (EG), carbon nanotubes (CNTs), and advanced ceramic materials, including boron nitride (BN) and silicon carbide (SiC). Experimental evaluations reveal that the SSPCM achieves exceptional leak-proof performance, mechanical durability, and a significant improvement in thermal conductivity—up to 0.95 W/mK, marking a 4.13-fold enhancement over baseline values. Crucially, the developed SSPCM demonstrates remarkable efficacy in temperature regulation, maintaining the operational temperature of lithium battery packs within the optimal range of 20–55 °C under a 3C discharge rate. The internal temperature variation is kept below 3 °C, showcasing the material's potential in improving thermal management systems' reliability and performance.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"104 \",\"pages\":\"Article 114565\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24041513\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24041513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

有效的热管理对各种系统的可靠性和效率至关重要,然而传统的相变材料却存在局限性。本研究介绍了一种新型固固相变材料(SSPCM),其设计具有优异的抗泄漏性和机械完整性。SSPCM 是以聚乙二醇 (PEG) 和六亚甲基二异氰酸酯 (HDI) 为前体,通过聚氨酯交联反应合成的。这种方法通过聚氨酯键将相变分子链以化学方式整合到热固性聚合物基体中,有效缓解了传统 PCM 复合材料中普遍存在的泄漏问题,同时增强了热稳定性。为了增强导热性,我们设计了一种混合传热网络,其中包含膨胀石墨 (EG)、碳纳米管 (CNT) 和先进陶瓷材料,包括氮化硼 (BN) 和碳化硅 (SiC)。实验评估表明,SSPCM 具有优异的防漏性能、机械耐久性和显著的导热性能,导热系数高达 0.95 W/mK,比基准值提高了 4.13 倍。最重要的是,所开发的 SSPCM 在温度调节方面表现出卓越的功效,在 3 摄氏度放电率下,可将锂电池组的工作温度保持在 20-55 摄氏度的最佳范围内。内部温度变化保持在 3 ℃ 以下,显示了该材料在提高热管理系统的可靠性和性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase change material with outstanding thermal stability and mechanical strength for battery thermal management
Effective thermal management is crucial for the reliability and efficiency of various systems, yet conventional phase change materials encounter limitations. This research introduces a novel solid-solid phase change material (SSPCM) designed for superior leak resistance and mechanical integrity. The SSPCM is synthesized via a polyurethane cross-linking reaction, employing polyethylene glycol (PEG) and hexamethylene diisocyanate (HDI) as precursors. This method chemically integrates phase change molecular chains into a thermosetting polymer matrix via polyurethane bonds, effectively mitigating leakage issues prevalent in traditional PCM composites while enhancing thermal stability. To augment thermal conductivity, we engineered a hybrid heat transfer network incorporating expanded graphite (EG), carbon nanotubes (CNTs), and advanced ceramic materials, including boron nitride (BN) and silicon carbide (SiC). Experimental evaluations reveal that the SSPCM achieves exceptional leak-proof performance, mechanical durability, and a significant improvement in thermal conductivity—up to 0.95 W/mK, marking a 4.13-fold enhancement over baseline values. Crucially, the developed SSPCM demonstrates remarkable efficacy in temperature regulation, maintaining the operational temperature of lithium battery packs within the optimal range of 20–55 °C under a 3C discharge rate. The internal temperature variation is kept below 3 °C, showcasing the material's potential in improving thermal management systems' reliability and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of energy storage
Journal of energy storage Energy-Renewable Energy, Sustainability and the Environment
CiteScore
11.80
自引率
24.50%
发文量
2262
审稿时长
69 days
期刊介绍: Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.
期刊最新文献
Nature-inspired materials as sustainable electrodes for energy storage devices: Recent trends and future aspects Correlation analysis and feature extraction using impedance spectroscopy over aging of lithium ion batteries Optimal power utilization in hybrid microgrid systems with IoT-based battery-sustained energy management using RSA-PFGAN approach Low-defect potassium vanadyl hexacyanoferrate cathode material with high specific capacity for aqueous zinc ion batteries Power management and control of a DC microgrid with hybrid energy storage systems using hybrid ANN-based model predictive control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1