基于物理信息生成式深度学习的风力涡轮机分层动态尾流建模

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-11-08 DOI:10.1016/j.apenergy.2024.124812
Qiulei Wang , Zilong Ti , Shanghui Yang , Kun Yang , Jiaji Wang , Xiaowei Deng
{"title":"基于物理信息生成式深度学习的风力涡轮机分层动态尾流建模","authors":"Qiulei Wang ,&nbsp;Zilong Ti ,&nbsp;Shanghui Yang ,&nbsp;Kun Yang ,&nbsp;Jiaji Wang ,&nbsp;Xiaowei Deng","doi":"10.1016/j.apenergy.2024.124812","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing demand for electric power, the size of wind farms is becoming much larger than ever before. Power and load prediction are two of the most essential topics in wind farm layout optimization. Traditional wake modeling methods, such as analytic models and CFD simulations, struggle to handle such large-scale problems accurately and efficiently. In this study, a novel hierarchical dynamic wake modeling approach for wind turbines using generative deep learning, <span>PHOENIX</span> (PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration), is proposed to capture the spatial–temporal features of the unsteady wake field in wind turbine clusters. The dynamic wake meandering (DWM) model is employed to generate the corresponding datasets for training, testing, and validating the deep learning-based wake prediction framework. This research is expected to accelerate the prediction process and improve accuracy, and it can be further applied to wind turbine design and wind farm layout optimization.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"378 ","pages":"Article 124812"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning\",\"authors\":\"Qiulei Wang ,&nbsp;Zilong Ti ,&nbsp;Shanghui Yang ,&nbsp;Kun Yang ,&nbsp;Jiaji Wang ,&nbsp;Xiaowei Deng\",\"doi\":\"10.1016/j.apenergy.2024.124812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing demand for electric power, the size of wind farms is becoming much larger than ever before. Power and load prediction are two of the most essential topics in wind farm layout optimization. Traditional wake modeling methods, such as analytic models and CFD simulations, struggle to handle such large-scale problems accurately and efficiently. In this study, a novel hierarchical dynamic wake modeling approach for wind turbines using generative deep learning, <span>PHOENIX</span> (PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration), is proposed to capture the spatial–temporal features of the unsteady wake field in wind turbine clusters. The dynamic wake meandering (DWM) model is employed to generate the corresponding datasets for training, testing, and validating the deep learning-based wake prediction framework. This research is expected to accelerate the prediction process and improve accuracy, and it can be further applied to wind turbine design and wind farm layout optimization.</div></div>\",\"PeriodicalId\":246,\"journal\":{\"name\":\"Applied Energy\",\"volume\":\"378 \",\"pages\":\"Article 124812\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306261924021950\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924021950","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

随着电力需求的不断增长,风电场的规模也变得比以往大得多。功率和负荷预测是风电场布局优化中最重要的两个课题。传统的尾流建模方法,如分析模型和 CFD 模拟,难以准确高效地处理此类大规模问题。本研究提出了一种使用生成式深度学习的新型风力涡轮机分层动态尾流建模方法 PHOENIX(PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration),以捕捉风力涡轮机群中不稳定尾流场的时空特征。利用动态尾流蜿蜒(DWM)模型生成相应的数据集,用于训练、测试和验证基于深度学习的尾流预测框架。这项研究有望加速预测过程,提高预测精度,并可进一步应用于风机设计和风电场布局优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical dynamic wake modeling of wind turbine based on physics-informed generative deep learning
With the increasing demand for electric power, the size of wind farms is becoming much larger than ever before. Power and load prediction are two of the most essential topics in wind farm layout optimization. Traditional wake modeling methods, such as analytic models and CFD simulations, struggle to handle such large-scale problems accurately and efficiently. In this study, a novel hierarchical dynamic wake modeling approach for wind turbines using generative deep learning, PHOENIX (PHysics-infOrmed gEnerative deep learniNg for hIerarchical dynamic wake modeling eXploration), is proposed to capture the spatial–temporal features of the unsteady wake field in wind turbine clusters. The dynamic wake meandering (DWM) model is employed to generate the corresponding datasets for training, testing, and validating the deep learning-based wake prediction framework. This research is expected to accelerate the prediction process and improve accuracy, and it can be further applied to wind turbine design and wind farm layout optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Boosting the power density of direct borohydride fuel cells to >600 mW cm−2 by cathode water management Editorial Board A distributed thermal-pressure coupling model of large-format lithium iron phosphate battery thermal runaway Optimization and parametric analysis of a novel design of Savonius hydrokinetic turbine using artificial neural network Delay-tolerant hierarchical distributed control for DC microgrid clusters considering microgrid autonomy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1