{"title":"优化可再生能源系统,实现 100% 清洁能源目标:太阳能、水能、抽水蓄能和电池储能技术比较研究","authors":"Zainullah Serat","doi":"10.1016/j.est.2024.114441","DOIUrl":null,"url":null,"abstract":"<div><div>Addressing global environmental concerns and rising energy demand underscores the urgent need for sustainable renewable energy solutions. This study introduces a novel optimization framework for 100 % hybrid renewable energy systems (HRES) tailored for rural electrification, utilizing HOMER software. This study conducts a comprehensive comparative analysis of mono-crystalline silicon (m-Si) and poly-crystalline silicon (p-Si) photovoltaic (PV) technologies, integrated with hydro, pumped hydro storage (PHS), and battery storage systems, from both energy performance and economic perspectives. The study examines three scenarios, m-Si and p-Si PV systems with PHS, m-Si, and p-Si PV systems with battery storage, and a direct comparison of the optimal configurations from these scenarios. The results indicate that the p-Si PV/Hybrid/PHS system, with a capacity of 162 kW PV, 25 kW hydro, and 1525 kWh PHS, is the most cost-effective and energy-efficient solution. This system generates 474,399 kWh annually, with a net present cost (NPC) of US$472,528.54 and a cost of energy (COE) of US$0.101/kWh. Its superior economic performance and minimized excess energy make it the optimal choice for sustainable energy generation in the targeted rural area. Sensitivity analysis further underscores the critical role of solar irradiation and hydro flow rates in cost minimization. These findings highlight the importance of site-specific customization of PV technology and storage solutions, offering actionable insights for the design and implementation of sustainable energy systems in rural and off-grid environments. By providing a detailed optimization framework, this study significantly advances the development of renewable energy solutions, with potential applications in similar settings.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"104 ","pages":"Article 114441"},"PeriodicalIF":8.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing renewable energy systems for 100 % clean energy target: A comparative study of solar, hydro, pumped hydro, and battery storage technologies\",\"authors\":\"Zainullah Serat\",\"doi\":\"10.1016/j.est.2024.114441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Addressing global environmental concerns and rising energy demand underscores the urgent need for sustainable renewable energy solutions. This study introduces a novel optimization framework for 100 % hybrid renewable energy systems (HRES) tailored for rural electrification, utilizing HOMER software. This study conducts a comprehensive comparative analysis of mono-crystalline silicon (m-Si) and poly-crystalline silicon (p-Si) photovoltaic (PV) technologies, integrated with hydro, pumped hydro storage (PHS), and battery storage systems, from both energy performance and economic perspectives. The study examines three scenarios, m-Si and p-Si PV systems with PHS, m-Si, and p-Si PV systems with battery storage, and a direct comparison of the optimal configurations from these scenarios. The results indicate that the p-Si PV/Hybrid/PHS system, with a capacity of 162 kW PV, 25 kW hydro, and 1525 kWh PHS, is the most cost-effective and energy-efficient solution. This system generates 474,399 kWh annually, with a net present cost (NPC) of US$472,528.54 and a cost of energy (COE) of US$0.101/kWh. Its superior economic performance and minimized excess energy make it the optimal choice for sustainable energy generation in the targeted rural area. Sensitivity analysis further underscores the critical role of solar irradiation and hydro flow rates in cost minimization. These findings highlight the importance of site-specific customization of PV technology and storage solutions, offering actionable insights for the design and implementation of sustainable energy systems in rural and off-grid environments. By providing a detailed optimization framework, this study significantly advances the development of renewable energy solutions, with potential applications in similar settings.</div></div>\",\"PeriodicalId\":15942,\"journal\":{\"name\":\"Journal of energy storage\",\"volume\":\"104 \",\"pages\":\"Article 114441\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of energy storage\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352152X24040271\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X24040271","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimizing renewable energy systems for 100 % clean energy target: A comparative study of solar, hydro, pumped hydro, and battery storage technologies
Addressing global environmental concerns and rising energy demand underscores the urgent need for sustainable renewable energy solutions. This study introduces a novel optimization framework for 100 % hybrid renewable energy systems (HRES) tailored for rural electrification, utilizing HOMER software. This study conducts a comprehensive comparative analysis of mono-crystalline silicon (m-Si) and poly-crystalline silicon (p-Si) photovoltaic (PV) technologies, integrated with hydro, pumped hydro storage (PHS), and battery storage systems, from both energy performance and economic perspectives. The study examines three scenarios, m-Si and p-Si PV systems with PHS, m-Si, and p-Si PV systems with battery storage, and a direct comparison of the optimal configurations from these scenarios. The results indicate that the p-Si PV/Hybrid/PHS system, with a capacity of 162 kW PV, 25 kW hydro, and 1525 kWh PHS, is the most cost-effective and energy-efficient solution. This system generates 474,399 kWh annually, with a net present cost (NPC) of US$472,528.54 and a cost of energy (COE) of US$0.101/kWh. Its superior economic performance and minimized excess energy make it the optimal choice for sustainable energy generation in the targeted rural area. Sensitivity analysis further underscores the critical role of solar irradiation and hydro flow rates in cost minimization. These findings highlight the importance of site-specific customization of PV technology and storage solutions, offering actionable insights for the design and implementation of sustainable energy systems in rural and off-grid environments. By providing a detailed optimization framework, this study significantly advances the development of renewable energy solutions, with potential applications in similar settings.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.