草唑烷在多功能共聚物纳米颗粒中的固态溶解变色:开发具有多色荧光的先进材料

IF 5.8 2区 化学 Q1 POLYMER SCIENCE European Polymer Journal Pub Date : 2024-11-05 DOI:10.1016/j.eurpolymj.2024.113555
Amin Abdollahi , Younes Habibi , Bita Ghasemi , Zahra Mohamadnia
{"title":"草唑烷在多功能共聚物纳米颗粒中的固态溶解变色:开发具有多色荧光的先进材料","authors":"Amin Abdollahi ,&nbsp;Younes Habibi ,&nbsp;Bita Ghasemi ,&nbsp;Zahra Mohamadnia","doi":"10.1016/j.eurpolymj.2024.113555","DOIUrl":null,"url":null,"abstract":"<div><div>Investigating the solvatochromism of stimuli-chromic compounds such as oxazolidine in polymer matrices with various polarities or functionalities is a unique approach to developing advanced materials for anticounterfeiting, sensor, optoelectronic, and displayers. In a novel strategy, multi-functionalized copolymer nanoparticles were synthesized by copolymerization of methyl methacrylate (MMA) with various functional comonomers in emulsion media for post-polymerization modification with oxazolidine and investigation of its solvatochromism in both colloidal solution and solid phase. The particle size and morphology of nanoparticles were influenced significantly by the polarity of functional groups, and the morphology evolution from sphere to anisotropic shapes was observed by increasing the polarity of functional groups. Investigation of oxazolidine solvatochromism in colloidal solution and solid polymer powders indicated different mechanisms for solvatochromism, in which the polarity of media is the main effective parameter in colloidal solution and the polarity of functional groups in the polymer structure is the main effective parameter in solid polymer phase. The solvatochromism of oxazolidine was confirmed by observed red shift and blue shift in UV–Vis and fluorescence spectra, in which the intensity of absorbance and emission peaks was changed as a function of the polarity of functional groups. Solvatochromic photoluminescent polymer nanoparticles were used for several advanced applications such as solid anticounterfeiting inks to information encryption, dual-mode visualization of latent fingerprints, and also development of organic light-emitting diodes (OLEDs). For the first time, the results indicate a significant effect of polymer chain local polarity induced by functional groups on the tuning of optical properties of the oxazolidine by the solid-state solvatochromic phenomenon. Solvatochromism of oxazolidine in functionalized polymer nanoparticles is an interesting approach to developing novel intelligent materials that have advanced applications in different fields such as anticounterfeiting and information encryption, optoelectronic, polarity sensor, and visualization of latent fingerprints.</div></div>","PeriodicalId":315,"journal":{"name":"European Polymer Journal","volume":"221 ","pages":"Article 113555"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-state solvatochromism of oxazolidine in multi-functionalized copolymer nanoparticles: Development of advanced materials with multi-color fluorescence\",\"authors\":\"Amin Abdollahi ,&nbsp;Younes Habibi ,&nbsp;Bita Ghasemi ,&nbsp;Zahra Mohamadnia\",\"doi\":\"10.1016/j.eurpolymj.2024.113555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Investigating the solvatochromism of stimuli-chromic compounds such as oxazolidine in polymer matrices with various polarities or functionalities is a unique approach to developing advanced materials for anticounterfeiting, sensor, optoelectronic, and displayers. In a novel strategy, multi-functionalized copolymer nanoparticles were synthesized by copolymerization of methyl methacrylate (MMA) with various functional comonomers in emulsion media for post-polymerization modification with oxazolidine and investigation of its solvatochromism in both colloidal solution and solid phase. The particle size and morphology of nanoparticles were influenced significantly by the polarity of functional groups, and the morphology evolution from sphere to anisotropic shapes was observed by increasing the polarity of functional groups. Investigation of oxazolidine solvatochromism in colloidal solution and solid polymer powders indicated different mechanisms for solvatochromism, in which the polarity of media is the main effective parameter in colloidal solution and the polarity of functional groups in the polymer structure is the main effective parameter in solid polymer phase. The solvatochromism of oxazolidine was confirmed by observed red shift and blue shift in UV–Vis and fluorescence spectra, in which the intensity of absorbance and emission peaks was changed as a function of the polarity of functional groups. Solvatochromic photoluminescent polymer nanoparticles were used for several advanced applications such as solid anticounterfeiting inks to information encryption, dual-mode visualization of latent fingerprints, and also development of organic light-emitting diodes (OLEDs). For the first time, the results indicate a significant effect of polymer chain local polarity induced by functional groups on the tuning of optical properties of the oxazolidine by the solid-state solvatochromic phenomenon. Solvatochromism of oxazolidine in functionalized polymer nanoparticles is an interesting approach to developing novel intelligent materials that have advanced applications in different fields such as anticounterfeiting and information encryption, optoelectronic, polarity sensor, and visualization of latent fingerprints.</div></div>\",\"PeriodicalId\":315,\"journal\":{\"name\":\"European Polymer Journal\",\"volume\":\"221 \",\"pages\":\"Article 113555\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014305724008164\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014305724008164","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究噁唑烷等刺激变色化合物在具有不同极性或功能性的聚合物基质中的溶解变色性是开发用于防伪、传感器、光电和显示器的先进材料的一种独特方法。在一种新颖的策略中,通过在乳液介质中将甲基丙烯酸甲酯(MMA)与各种功能共聚单体共聚,合成了多功能共聚物纳米粒子,然后用恶唑烷对其进行聚合后改性,并研究了其在胶体溶液和固相中的溶解变色性。纳米粒子的粒度和形态受官能团极性的影响很大,随着官能团极性的增加,纳米粒子的形态也从球形演变为各向异性的形状。对恶唑烷在胶体溶液和固体聚合物粉末中溶解变色的研究表明,溶解变色的机理不同,在胶体溶液中,介质的极性是主要的有效参数,而在固体聚合物相中,聚合物结构中官能团的极性是主要的有效参数。通过观察紫外-可见光谱和荧光光谱中的红移和蓝移,证实了噁唑烷的溶解变色作用,其中吸收峰和发射峰的强度随官能团的极性而变化。溶变色光致发光聚合物纳米粒子被用于多种先进的应用领域,如信息加密的固体防伪油墨、潜伏指纹的双模式可视化,以及有机发光二极管(OLED)的开发。研究结果首次表明,官能团诱导的聚合物链局部极性对通过固态溶解变色现象调整恶唑烷的光学特性有显著影响。草唑烷在功能化聚合物纳米粒子中的溶解变色现象是开发新型智能材料的一种有趣方法,这种材料在防伪和信息加密、光电、极性传感器和潜伏指纹可视化等不同领域都有先进的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solid-state solvatochromism of oxazolidine in multi-functionalized copolymer nanoparticles: Development of advanced materials with multi-color fluorescence
Investigating the solvatochromism of stimuli-chromic compounds such as oxazolidine in polymer matrices with various polarities or functionalities is a unique approach to developing advanced materials for anticounterfeiting, sensor, optoelectronic, and displayers. In a novel strategy, multi-functionalized copolymer nanoparticles were synthesized by copolymerization of methyl methacrylate (MMA) with various functional comonomers in emulsion media for post-polymerization modification with oxazolidine and investigation of its solvatochromism in both colloidal solution and solid phase. The particle size and morphology of nanoparticles were influenced significantly by the polarity of functional groups, and the morphology evolution from sphere to anisotropic shapes was observed by increasing the polarity of functional groups. Investigation of oxazolidine solvatochromism in colloidal solution and solid polymer powders indicated different mechanisms for solvatochromism, in which the polarity of media is the main effective parameter in colloidal solution and the polarity of functional groups in the polymer structure is the main effective parameter in solid polymer phase. The solvatochromism of oxazolidine was confirmed by observed red shift and blue shift in UV–Vis and fluorescence spectra, in which the intensity of absorbance and emission peaks was changed as a function of the polarity of functional groups. Solvatochromic photoluminescent polymer nanoparticles were used for several advanced applications such as solid anticounterfeiting inks to information encryption, dual-mode visualization of latent fingerprints, and also development of organic light-emitting diodes (OLEDs). For the first time, the results indicate a significant effect of polymer chain local polarity induced by functional groups on the tuning of optical properties of the oxazolidine by the solid-state solvatochromic phenomenon. Solvatochromism of oxazolidine in functionalized polymer nanoparticles is an interesting approach to developing novel intelligent materials that have advanced applications in different fields such as anticounterfeiting and information encryption, optoelectronic, polarity sensor, and visualization of latent fingerprints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Polymer Journal
European Polymer Journal 化学-高分子科学
CiteScore
9.90
自引率
10.00%
发文量
691
审稿时长
23 days
期刊介绍: European Polymer Journal is dedicated to publishing work on fundamental and applied polymer chemistry and macromolecular materials. The journal covers all aspects of polymer synthesis, including polymerization mechanisms and chemical functional transformations, with a focus on novel polymers and the relationships between molecular structure and polymer properties. In addition, we welcome submissions on bio-based or renewable polymers, stimuli-responsive systems and polymer bio-hybrids. European Polymer Journal also publishes research on the biomedical application of polymers, including drug delivery and regenerative medicine. The main scope is covered but not limited to the following core research areas: Polymer synthesis and functionalization • Novel synthetic routes for polymerization, functional modification, controlled/living polymerization and precision polymers. Stimuli-responsive polymers • Including shape memory and self-healing polymers. Supramolecular polymers and self-assembly • Molecular recognition and higher order polymer structures. Renewable and sustainable polymers • Bio-based, biodegradable and anti-microbial polymers and polymeric bio-nanocomposites. Polymers at interfaces and surfaces • Chemistry and engineering of surfaces with biological relevance, including patterning, antifouling polymers and polymers for membrane applications. Biomedical applications and nanomedicine • Polymers for regenerative medicine, drug delivery molecular release and gene therapy The scope of European Polymer Journal no longer includes Polymer Physics.
期刊最新文献
Graphical abstract TOC Graphical abstract TOC Contents continued Editorial Board Constructing boiling water resistant and flame-retardant wood composites based on enzyme catalyzed synergistic high branching crosslinking strategy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1