Racliffe Weng Seng Lai , Tian Qiu , Xuyang Zhang , Yalin Wang , Tianwei Hao , Xinlei Ge , Lin Du , Mingjin Tang , Ka In Hoi , Kai Meng Mok , Yong Jie Li
{"title":"解读硝酸铵介导的甲氧基苯酚水相光反应过程中氧化潜能的关键驱动因素","authors":"Racliffe Weng Seng Lai , Tian Qiu , Xuyang Zhang , Yalin Wang , Tianwei Hao , Xinlei Ge , Lin Du , Mingjin Tang , Ka In Hoi , Kai Meng Mok , Yong Jie Li","doi":"10.1016/j.atmosenv.2024.120895","DOIUrl":null,"url":null,"abstract":"<div><div>Methoxyphenols are released in abundance from lignin pyrolysis during biomass burning. Apart from being atmospheric brown carbon components that absorb solar radiation and warm the climate, methoxyphenols also undergo photoreaction in the atmospheric aqueous phase and form secondary organic aerosols (aqSOA). While efforts have been devoted to understanding chemical evolutions and climate-related optical properties of aqSOA, their potential health impacts also require timely investigations. Herein, we used the dithiothreitol (DTT) assay to investigate oxidative potential of the aqSOA formed during the 8-h aqueous-phase photoreaction of two typical methoxyphenols, vanillin and vanillic acid, under pH 2 or 8, and with or without ammonia nitrate. The highest DTT consumption rates (R<sub>DTT</sub>) were observed for vanillin aqSOA formed in the presence of ammonia nitrate and at pH 8. At pH 2, although R<sub>DTT</sub> increased rapidly during early photoreaction, it reduced after prolonged illumination. High-resolution mass spectrometry and linear regression analyses were performed to correlate the photoreaction products with the observed R<sub>DTT</sub>. Results showed that three products that present quinone, lactone and dimer structures, respectively, should be the key drivers of elevated R<sub>DTT</sub> for aqSOA formed during photoreaction of vanillin and vanillic acid alone, whereas it shifted to the nitrogen-containing aromatic compounds during their photoreaction with ammonia nitrate. Our results have revealed the role of nitrogen-containing aromatic compounds in the oxidative potential and health effects of aqSOA from biomass burning, which was rarely recognized before and warrants immediate assessments.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"340 ","pages":"Article 120895"},"PeriodicalIF":4.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering the key drivers of oxidative potential during ammonium nitrate-mediated aqueous-phase photoreaction of methoxyphenols\",\"authors\":\"Racliffe Weng Seng Lai , Tian Qiu , Xuyang Zhang , Yalin Wang , Tianwei Hao , Xinlei Ge , Lin Du , Mingjin Tang , Ka In Hoi , Kai Meng Mok , Yong Jie Li\",\"doi\":\"10.1016/j.atmosenv.2024.120895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Methoxyphenols are released in abundance from lignin pyrolysis during biomass burning. Apart from being atmospheric brown carbon components that absorb solar radiation and warm the climate, methoxyphenols also undergo photoreaction in the atmospheric aqueous phase and form secondary organic aerosols (aqSOA). While efforts have been devoted to understanding chemical evolutions and climate-related optical properties of aqSOA, their potential health impacts also require timely investigations. Herein, we used the dithiothreitol (DTT) assay to investigate oxidative potential of the aqSOA formed during the 8-h aqueous-phase photoreaction of two typical methoxyphenols, vanillin and vanillic acid, under pH 2 or 8, and with or without ammonia nitrate. The highest DTT consumption rates (R<sub>DTT</sub>) were observed for vanillin aqSOA formed in the presence of ammonia nitrate and at pH 8. At pH 2, although R<sub>DTT</sub> increased rapidly during early photoreaction, it reduced after prolonged illumination. High-resolution mass spectrometry and linear regression analyses were performed to correlate the photoreaction products with the observed R<sub>DTT</sub>. Results showed that three products that present quinone, lactone and dimer structures, respectively, should be the key drivers of elevated R<sub>DTT</sub> for aqSOA formed during photoreaction of vanillin and vanillic acid alone, whereas it shifted to the nitrogen-containing aromatic compounds during their photoreaction with ammonia nitrate. Our results have revealed the role of nitrogen-containing aromatic compounds in the oxidative potential and health effects of aqSOA from biomass burning, which was rarely recognized before and warrants immediate assessments.</div></div>\",\"PeriodicalId\":250,\"journal\":{\"name\":\"Atmospheric Environment\",\"volume\":\"340 \",\"pages\":\"Article 120895\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1352231024005703\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1352231024005703","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Deciphering the key drivers of oxidative potential during ammonium nitrate-mediated aqueous-phase photoreaction of methoxyphenols
Methoxyphenols are released in abundance from lignin pyrolysis during biomass burning. Apart from being atmospheric brown carbon components that absorb solar radiation and warm the climate, methoxyphenols also undergo photoreaction in the atmospheric aqueous phase and form secondary organic aerosols (aqSOA). While efforts have been devoted to understanding chemical evolutions and climate-related optical properties of aqSOA, their potential health impacts also require timely investigations. Herein, we used the dithiothreitol (DTT) assay to investigate oxidative potential of the aqSOA formed during the 8-h aqueous-phase photoreaction of two typical methoxyphenols, vanillin and vanillic acid, under pH 2 or 8, and with or without ammonia nitrate. The highest DTT consumption rates (RDTT) were observed for vanillin aqSOA formed in the presence of ammonia nitrate and at pH 8. At pH 2, although RDTT increased rapidly during early photoreaction, it reduced after prolonged illumination. High-resolution mass spectrometry and linear regression analyses were performed to correlate the photoreaction products with the observed RDTT. Results showed that three products that present quinone, lactone and dimer structures, respectively, should be the key drivers of elevated RDTT for aqSOA formed during photoreaction of vanillin and vanillic acid alone, whereas it shifted to the nitrogen-containing aromatic compounds during their photoreaction with ammonia nitrate. Our results have revealed the role of nitrogen-containing aromatic compounds in the oxidative potential and health effects of aqSOA from biomass burning, which was rarely recognized before and warrants immediate assessments.
期刊介绍:
Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.