Sona Alyounis , Delal E. Al Momani , Fahim Abdul Gafoor , Zaineb AlAnsari , Hamed Al Hashemi , Maryam R. AlShehhi
{"title":"利用 Sentinel-1 和 Sentinel-2 数据及机器学习揭示干旱地区伊蒂哈德铁路沿线的土壤一致性模式","authors":"Sona Alyounis , Delal E. Al Momani , Fahim Abdul Gafoor , Zaineb AlAnsari , Hamed Al Hashemi , Maryam R. AlShehhi","doi":"10.1016/j.rsase.2024.101374","DOIUrl":null,"url":null,"abstract":"<div><div>This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and under-construction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101374"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling soil coherence patterns along Etihad Rail using Sentinel-1 and Sentinel-2 data and machine learning in arid region\",\"authors\":\"Sona Alyounis , Delal E. Al Momani , Fahim Abdul Gafoor , Zaineb AlAnsari , Hamed Al Hashemi , Maryam R. AlShehhi\",\"doi\":\"10.1016/j.rsase.2024.101374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and under-construction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.</div></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101374\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
这项研究将机器学习应用于预测阿提哈德铁路的土壤连贯性,这是在阿拉伯联合酋长国(UAE)干旱地区进行的首次全面研究。通过将 Sentinel-1 SAR 和 Sentinel-2 数据与 MODIS 气溶胶光学深度 (AOD) 观测数据相结合,该研究建立了详细的模型,描述了对城市规划和风险评估至关重要的复杂土壤连贯性模式。研究结果表明,受气溶胶动态和沙尘水平季节性变化的影响,运行阶段和施工阶段的土壤连贯性存在差异。较高的土壤相干性与较低的沙尘年沉积量和 AOD 测量值相关,强调了这些数据对知情决策的重要性。该研究采用了独特的数据源和机器学习算法组合来预测土壤连贯性,包括支持向量机(SVM)、极梯度提升(XGBOOST)、高斯过程回归(GPR)、随机森林(RF)和一维卷积神经网络(CNN),其中随机森林模型的均方根误差(RMSE)最低,为 0.0826。这些贡献加深了我们的理解,并为类似环境下的基础设施开发提供了宝贵的框架。
Unveiling soil coherence patterns along Etihad Rail using Sentinel-1 and Sentinel-2 data and machine learning in arid region
This research applies machine learning to predict soil coherence for Etihad Rail, marking the first comprehensive study in the United Arab Emirates (UAE)'s arid regions. By integrating Sentinel-1 SAR and Sentinel-2 data with MODIS Aerosol Optical Depth (AOD) observations, the study develops detailed models that depict complex soil coherence patterns crucial for urban planning and risk assessment. Findings show variations in soil coherence between operational and under-construction phases, influenced by seasonal changes in aerosol dynamics and sand dust levels. Higher soil coherence is linked with lower annual sand dust deposition and AOD measurements, emphasizing the importance of this data for informed decision-making. The study employs a unique combination of data sources and machine learning algorithms to predict soil coherence, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBOOST), Gaussian Process Regression (GPR), Random Forest (RF), and 1D Convolutional Neural Network (CNN), with the Random Forest model achieving the lowest root mean squared error (RMSE) of 0.0826. These contributions enhance our understanding and provide a valuable framework for infrastructure development in similar environments.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems