加载频率对超高强度特种水泥基复合材料拉伸疲劳行为的影响

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2024-11-08 DOI:10.1016/j.ijfatigue.2024.108701
Fuhao Deng , Zhao Wang , Yuanhao Wei
{"title":"加载频率对超高强度特种水泥基复合材料拉伸疲劳行为的影响","authors":"Fuhao Deng ,&nbsp;Zhao Wang ,&nbsp;Yuanhao Wei","doi":"10.1016/j.ijfatigue.2024.108701","DOIUrl":null,"url":null,"abstract":"<div><div>The ultra-high-strength engineering cementitious composites demonstrates pseudo strain hardening behavior when subjected to uniaxial tension, making it a promising material for enduring repeated or fatigue loads. Extensive research has been conducted on the quasi-static, dynamic, and fatigue behavior of this composites. However, due to the challenges of conducting direct tensile testing on concrete, investigations into the tensile fatigue behavior of ECC, particularly for ultra-high-strength ECC, remain limited. The fatigue behavior of concrete can be influenced by various factors. This study focuses on the impact of loading frequency. Several series of tensile fatigue tests were conducted under different loading frequencies and stress levels. The test results revealed that fatigue life increases with higher applied loading frequencies and decreases with increasing stress levels. The analysis of the test results includes the examination of failure modes, fatigue life, deformation, and secondary strain rates. A probabilistic model of fatigue failure, considering the discreteness of the initial static strength, was proposed based on the fatigue life. This model aligned well with the experimental results, providing valuable insights into the behavior of ultra-high-strength ECC under tensile fatigue conditions.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108701"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of loading frequency on tensile fatigue behavior of ultra-high-strength engineered cementitious composites\",\"authors\":\"Fuhao Deng ,&nbsp;Zhao Wang ,&nbsp;Yuanhao Wei\",\"doi\":\"10.1016/j.ijfatigue.2024.108701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultra-high-strength engineering cementitious composites demonstrates pseudo strain hardening behavior when subjected to uniaxial tension, making it a promising material for enduring repeated or fatigue loads. Extensive research has been conducted on the quasi-static, dynamic, and fatigue behavior of this composites. However, due to the challenges of conducting direct tensile testing on concrete, investigations into the tensile fatigue behavior of ECC, particularly for ultra-high-strength ECC, remain limited. The fatigue behavior of concrete can be influenced by various factors. This study focuses on the impact of loading frequency. Several series of tensile fatigue tests were conducted under different loading frequencies and stress levels. The test results revealed that fatigue life increases with higher applied loading frequencies and decreases with increasing stress levels. The analysis of the test results includes the examination of failure modes, fatigue life, deformation, and secondary strain rates. A probabilistic model of fatigue failure, considering the discreteness of the initial static strength, was proposed based on the fatigue life. This model aligned well with the experimental results, providing valuable insights into the behavior of ultra-high-strength ECC under tensile fatigue conditions.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"191 \",\"pages\":\"Article 108701\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005607\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005607","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

超高强度工程水泥基复合材料在承受单轴拉伸时会出现假应变硬化行为,因此是一种很有希望承受重复或疲劳载荷的材料。人们对这种复合材料的准静态、动态和疲劳行为进行了广泛的研究。然而,由于对混凝土进行直接拉伸测试存在挑战,对 ECC 拉伸疲劳行为的研究仍然有限,尤其是对超高强度 ECC 的研究。混凝土的疲劳行为会受到各种因素的影响。本研究侧重于加载频率的影响。在不同的加载频率和应力水平下进行了多个系列的拉伸疲劳试验。试验结果表明,疲劳寿命随着加载频率的增加而增加,随着应力水平的增加而减少。对试验结果的分析包括对失效模式、疲劳寿命、变形和二次应变率的检查。考虑到初始静态强度的离散性,根据疲劳寿命提出了疲劳失效的概率模型。该模型与实验结果非常吻合,为了解超高强度 ECC 在拉伸疲劳条件下的行为提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of loading frequency on tensile fatigue behavior of ultra-high-strength engineered cementitious composites
The ultra-high-strength engineering cementitious composites demonstrates pseudo strain hardening behavior when subjected to uniaxial tension, making it a promising material for enduring repeated or fatigue loads. Extensive research has been conducted on the quasi-static, dynamic, and fatigue behavior of this composites. However, due to the challenges of conducting direct tensile testing on concrete, investigations into the tensile fatigue behavior of ECC, particularly for ultra-high-strength ECC, remain limited. The fatigue behavior of concrete can be influenced by various factors. This study focuses on the impact of loading frequency. Several series of tensile fatigue tests were conducted under different loading frequencies and stress levels. The test results revealed that fatigue life increases with higher applied loading frequencies and decreases with increasing stress levels. The analysis of the test results includes the examination of failure modes, fatigue life, deformation, and secondary strain rates. A probabilistic model of fatigue failure, considering the discreteness of the initial static strength, was proposed based on the fatigue life. This model aligned well with the experimental results, providing valuable insights into the behavior of ultra-high-strength ECC under tensile fatigue conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
Corrosion fatigue behavior of cast iron in simulated combustion product solutions of ammonia and methanol fuels A new nonlinear fatigue cumulative damage model based on load interaction and strength degradation Damage mechanisms of Ti60 under different uniaxial/multiaxial thermo-mechanical loading modes Effect of three-stage heat treatment on the composite waveform and variable amplitude fatigue properties of TC4 titanium alloy pulsed laser-arc hybrid welded joints A strain-interfaced digital twin solution for corner fatigue crack growth using Bayesian inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1