{"title":"加载频率对超高强度特种水泥基复合材料拉伸疲劳行为的影响","authors":"Fuhao Deng , Zhao Wang , Yuanhao Wei","doi":"10.1016/j.ijfatigue.2024.108701","DOIUrl":null,"url":null,"abstract":"<div><div>The ultra-high-strength engineering cementitious composites demonstrates pseudo strain hardening behavior when subjected to uniaxial tension, making it a promising material for enduring repeated or fatigue loads. Extensive research has been conducted on the quasi-static, dynamic, and fatigue behavior of this composites. However, due to the challenges of conducting direct tensile testing on concrete, investigations into the tensile fatigue behavior of ECC, particularly for ultra-high-strength ECC, remain limited. The fatigue behavior of concrete can be influenced by various factors. This study focuses on the impact of loading frequency. Several series of tensile fatigue tests were conducted under different loading frequencies and stress levels. The test results revealed that fatigue life increases with higher applied loading frequencies and decreases with increasing stress levels. The analysis of the test results includes the examination of failure modes, fatigue life, deformation, and secondary strain rates. A probabilistic model of fatigue failure, considering the discreteness of the initial static strength, was proposed based on the fatigue life. This model aligned well with the experimental results, providing valuable insights into the behavior of ultra-high-strength ECC under tensile fatigue conditions.</div></div>","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"191 ","pages":"Article 108701"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of loading frequency on tensile fatigue behavior of ultra-high-strength engineered cementitious composites\",\"authors\":\"Fuhao Deng , Zhao Wang , Yuanhao Wei\",\"doi\":\"10.1016/j.ijfatigue.2024.108701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The ultra-high-strength engineering cementitious composites demonstrates pseudo strain hardening behavior when subjected to uniaxial tension, making it a promising material for enduring repeated or fatigue loads. Extensive research has been conducted on the quasi-static, dynamic, and fatigue behavior of this composites. However, due to the challenges of conducting direct tensile testing on concrete, investigations into the tensile fatigue behavior of ECC, particularly for ultra-high-strength ECC, remain limited. The fatigue behavior of concrete can be influenced by various factors. This study focuses on the impact of loading frequency. Several series of tensile fatigue tests were conducted under different loading frequencies and stress levels. The test results revealed that fatigue life increases with higher applied loading frequencies and decreases with increasing stress levels. The analysis of the test results includes the examination of failure modes, fatigue life, deformation, and secondary strain rates. A probabilistic model of fatigue failure, considering the discreteness of the initial static strength, was proposed based on the fatigue life. This model aligned well with the experimental results, providing valuable insights into the behavior of ultra-high-strength ECC under tensile fatigue conditions.</div></div>\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"191 \",\"pages\":\"Article 108701\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142112324005607\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142112324005607","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of loading frequency on tensile fatigue behavior of ultra-high-strength engineered cementitious composites
The ultra-high-strength engineering cementitious composites demonstrates pseudo strain hardening behavior when subjected to uniaxial tension, making it a promising material for enduring repeated or fatigue loads. Extensive research has been conducted on the quasi-static, dynamic, and fatigue behavior of this composites. However, due to the challenges of conducting direct tensile testing on concrete, investigations into the tensile fatigue behavior of ECC, particularly for ultra-high-strength ECC, remain limited. The fatigue behavior of concrete can be influenced by various factors. This study focuses on the impact of loading frequency. Several series of tensile fatigue tests were conducted under different loading frequencies and stress levels. The test results revealed that fatigue life increases with higher applied loading frequencies and decreases with increasing stress levels. The analysis of the test results includes the examination of failure modes, fatigue life, deformation, and secondary strain rates. A probabilistic model of fatigue failure, considering the discreteness of the initial static strength, was proposed based on the fatigue life. This model aligned well with the experimental results, providing valuable insights into the behavior of ultra-high-strength ECC under tensile fatigue conditions.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.