沉积在 SS316L 基材上的单层和多层金属和陶瓷膜的耐腐蚀性能和氢脆保护效率

IF 4.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2024-11-08 DOI:10.1016/j.matchemphys.2024.130129
Hsuan-Kai Lin , Xue-Yu Lu , Cian-Yu Hu , Kao-Shu Chuang , Jui-Hsiung Huang
{"title":"沉积在 SS316L 基材上的单层和多层金属和陶瓷膜的耐腐蚀性能和氢脆保护效率","authors":"Hsuan-Kai Lin ,&nbsp;Xue-Yu Lu ,&nbsp;Cian-Yu Hu ,&nbsp;Kao-Shu Chuang ,&nbsp;Jui-Hsiung Huang","doi":"10.1016/j.matchemphys.2024.130129","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen is a promising source of clean energy. However, the tanks used to store hydrogen fuel are prone to hydrogen embrittlement and are thus at risk of stress cracking and catastrophic failure. Accordingly, this study deposited single-layer and double-layer Zr, Al, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Al@Al<sub>2</sub>O<sub>3</sub>, and Al@SiO<sub>2</sub> films on 316L stainless steel substrates and examined their feasibility as protective coatings by measuring their anti-corrosion properties and hydrogen permeation currents. The results showed that the single-layer Al<sub>2</sub>O<sub>3</sub> film had a higher corrosion resistance than the single-layer SiO<sub>2</sub> film and bare 316L substrate. Among all the coatings, the Al@Al<sub>2</sub>O<sub>3</sub> double-layer coating exhibited the highest protection efficiency of 95 %. Moreover, it showed the lowest hydrogen penetration current density (1.08 x 10<sup>−3</sup> A/cm<sup>2</sup>), the longest hydrogen embrittlement time (16000 s), and the lowest hydrogen content (0.008 mol/cm<sup>3</sup>). In other words, the Al@Al<sub>2</sub>O<sub>3</sub> double-layer coating combined superior corrosion resistance with excellent hydrogen permeation suppression. Consequently, it is a promising material for enhancing the safety and longevity of hydrogen storage tanks in practical applications.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"329 ","pages":"Article 130129"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistance properties and hydrogen embrittlement protection efficiency of single-layer and multi-layer metal and ceramic films deposited on SS316L substrates\",\"authors\":\"Hsuan-Kai Lin ,&nbsp;Xue-Yu Lu ,&nbsp;Cian-Yu Hu ,&nbsp;Kao-Shu Chuang ,&nbsp;Jui-Hsiung Huang\",\"doi\":\"10.1016/j.matchemphys.2024.130129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogen is a promising source of clean energy. However, the tanks used to store hydrogen fuel are prone to hydrogen embrittlement and are thus at risk of stress cracking and catastrophic failure. Accordingly, this study deposited single-layer and double-layer Zr, Al, SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Al@Al<sub>2</sub>O<sub>3</sub>, and Al@SiO<sub>2</sub> films on 316L stainless steel substrates and examined their feasibility as protective coatings by measuring their anti-corrosion properties and hydrogen permeation currents. The results showed that the single-layer Al<sub>2</sub>O<sub>3</sub> film had a higher corrosion resistance than the single-layer SiO<sub>2</sub> film and bare 316L substrate. Among all the coatings, the Al@Al<sub>2</sub>O<sub>3</sub> double-layer coating exhibited the highest protection efficiency of 95 %. Moreover, it showed the lowest hydrogen penetration current density (1.08 x 10<sup>−3</sup> A/cm<sup>2</sup>), the longest hydrogen embrittlement time (16000 s), and the lowest hydrogen content (0.008 mol/cm<sup>3</sup>). In other words, the Al@Al<sub>2</sub>O<sub>3</sub> double-layer coating combined superior corrosion resistance with excellent hydrogen permeation suppression. Consequently, it is a promising material for enhancing the safety and longevity of hydrogen storage tanks in practical applications.</div></div>\",\"PeriodicalId\":18227,\"journal\":{\"name\":\"Materials Chemistry and Physics\",\"volume\":\"329 \",\"pages\":\"Article 130129\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Chemistry and Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0254058424012574\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058424012574","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

氢是一种前景广阔的清洁能源。然而,用于储存氢燃料的储罐容易发生氢脆,从而面临应力开裂和灾难性失效的风险。因此,本研究在 316L 不锈钢基底上沉积了单层和双层 Zr、Al、SiO2、Al2O3、Al@Al2O3 和 Al@SiO2 薄膜,并通过测量它们的防腐蚀性能和氢渗透电流,考察了它们作为保护涂层的可行性。结果表明,单层 Al2O3 膜的耐腐蚀性高于单层 SiO2 膜和裸 316L 基材。在所有涂层中,Al@Al2O3 双层涂层的保护效率最高,达到 95%。此外,它还显示出最低的氢穿透电流密度(1.08 x 10-3 A/cm2)、最长的氢脆时间(16000 秒)和最低的氢含量(0.008 mol/cm3)。换句话说,Al@Al2O3 双层涂层兼具优异的耐腐蚀性和出色的氢渗透抑制能力。因此,在实际应用中,该材料有望提高储氢罐的安全性和使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrosion resistance properties and hydrogen embrittlement protection efficiency of single-layer and multi-layer metal and ceramic films deposited on SS316L substrates
Hydrogen is a promising source of clean energy. However, the tanks used to store hydrogen fuel are prone to hydrogen embrittlement and are thus at risk of stress cracking and catastrophic failure. Accordingly, this study deposited single-layer and double-layer Zr, Al, SiO2, Al2O3, Al@Al2O3, and Al@SiO2 films on 316L stainless steel substrates and examined their feasibility as protective coatings by measuring their anti-corrosion properties and hydrogen permeation currents. The results showed that the single-layer Al2O3 film had a higher corrosion resistance than the single-layer SiO2 film and bare 316L substrate. Among all the coatings, the Al@Al2O3 double-layer coating exhibited the highest protection efficiency of 95 %. Moreover, it showed the lowest hydrogen penetration current density (1.08 x 10−3 A/cm2), the longest hydrogen embrittlement time (16000 s), and the lowest hydrogen content (0.008 mol/cm3). In other words, the Al@Al2O3 double-layer coating combined superior corrosion resistance with excellent hydrogen permeation suppression. Consequently, it is a promising material for enhancing the safety and longevity of hydrogen storage tanks in practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Colloidal lithography: Synthesis and characterization of SiO2 and TiO2 micro-bowel arrays Effect of V2O5 coatings on NMC 111 battery cathode materials in aqueous process Reduced graphene oxide – CeO2 nanocomposites for photocatalytic dye degradation Structural modification of MgO/Au thin films by aluminum Co-doping and related studies on secondary electron emission Relationship between the shear modulus and volume relaxation in high-entropy metallic glasses: Experiment and physical origin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1