利用双重注意力转换器增强跨语言多模态情感识别能力

Syed Aun Muhammad Zaidi;Siddique Latif;Junaid Qadir
{"title":"利用双重注意力转换器增强跨语言多模态情感识别能力","authors":"Syed Aun Muhammad Zaidi;Siddique Latif;Junaid Qadir","doi":"10.1109/OJCS.2024.3486904","DOIUrl":null,"url":null,"abstract":"Despite the recent progress in emotion recognition, state-of-the-art systems are unable to achieve improved performance in cross-language settings. In this article we propose a Multimodal Dual Attention Transformer (MDAT) model to improve cross-language multimodal emotion recognition. Our model utilises pre-trained models for multimodal feature extraction and is equipped with dual attention mechanisms including graph attention and co-attention to capture complex dependencies across different modalities and languages to achieve improved cross-language multimodal emotion recognition. In addition, our model also exploits a transformer encoder layer for high-level feature representation to improve emotion classification accuracy. This novel construct preserves modality-specific emotional information while enhancing cross-modality and cross-language feature generalisation, resulting in improved performance with minimal target language data. We assess our model's performance on four publicly available emotion recognition datasets and establish its superior effectiveness compared to recent approaches and baseline models.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"5 ","pages":"684-693"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736634","citationCount":"0","resultStr":"{\"title\":\"Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers\",\"authors\":\"Syed Aun Muhammad Zaidi;Siddique Latif;Junaid Qadir\",\"doi\":\"10.1109/OJCS.2024.3486904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the recent progress in emotion recognition, state-of-the-art systems are unable to achieve improved performance in cross-language settings. In this article we propose a Multimodal Dual Attention Transformer (MDAT) model to improve cross-language multimodal emotion recognition. Our model utilises pre-trained models for multimodal feature extraction and is equipped with dual attention mechanisms including graph attention and co-attention to capture complex dependencies across different modalities and languages to achieve improved cross-language multimodal emotion recognition. In addition, our model also exploits a transformer encoder layer for high-level feature representation to improve emotion classification accuracy. This novel construct preserves modality-specific emotional information while enhancing cross-modality and cross-language feature generalisation, resulting in improved performance with minimal target language data. We assess our model's performance on four publicly available emotion recognition datasets and establish its superior effectiveness compared to recent approaches and baseline models.\",\"PeriodicalId\":13205,\"journal\":{\"name\":\"IEEE Open Journal of the Computer Society\",\"volume\":\"5 \",\"pages\":\"684-693\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10736634\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of the Computer Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10736634/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10736634/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

尽管最近在情感识别方面取得了进展,但最先进的系统在跨语言环境中仍无法实现更高的性能。在本文中,我们提出了一种多模态双注意转换器(MDAT)模型,以提高跨语言多模态情感识别能力。我们的模型利用预先训练好的模型进行多模态特征提取,并配备了双重注意机制,包括图注意和共同注意,以捕捉不同模态和语言之间的复杂依赖关系,从而实现更好的跨语言多模态情感识别。此外,我们的模型还利用转换编码器层进行高级特征表示,以提高情感分类的准确性。这种新颖的结构保留了特定模态的情感信息,同时增强了跨模态和跨语言的特征泛化,从而提高了使用最少目标语言数据的性能。我们在四个公开的情感识别数据集上评估了我们模型的性能,并确定了它与最新方法和基线模型相比的卓越效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers
Despite the recent progress in emotion recognition, state-of-the-art systems are unable to achieve improved performance in cross-language settings. In this article we propose a Multimodal Dual Attention Transformer (MDAT) model to improve cross-language multimodal emotion recognition. Our model utilises pre-trained models for multimodal feature extraction and is equipped with dual attention mechanisms including graph attention and co-attention to capture complex dependencies across different modalities and languages to achieve improved cross-language multimodal emotion recognition. In addition, our model also exploits a transformer encoder layer for high-level feature representation to improve emotion classification accuracy. This novel construct preserves modality-specific emotional information while enhancing cross-modality and cross-language feature generalisation, resulting in improved performance with minimal target language data. We assess our model's performance on four publicly available emotion recognition datasets and establish its superior effectiveness compared to recent approaches and baseline models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Cross-Language Multimodal Emotion Recognition With Dual Attention Transformers Video-Based Deception Detection via Capsule Network With Channel-Wise Attention and Supervised Contrastive Learning An Auditable, Privacy-Preserving, Transparent Unspent Transaction Output Model for Blockchain-Based Central Bank Digital Currency An Innovative Dense ResU-Net Architecture With T-Max-Avg Pooling for Advanced Crack Detection in Concrete Structures Polarity Classification of Low Resource Roman Urdu and Movie Reviews Sentiments Using Machine Learning-Based Ensemble Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1