利用银/氧化银集成二维/二维 g-C3N4/Ni3V2O8 S 型异质结构在可见光下协同光催化降解阿莫西林和环丙沙星

IF 7.1 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2024-10-26 DOI:10.1016/j.mtsust.2024.101017
Akhila Amasegowda , Sneha Yadav , Ragesh Nath R , Udaya Kumar A. H , Sneha Narayan Kulkarni , Harikaranahalli Puttaiah Shivaraju , N.K. Lokanath
{"title":"利用银/氧化银集成二维/二维 g-C3N4/Ni3V2O8 S 型异质结构在可见光下协同光催化降解阿莫西林和环丙沙星","authors":"Akhila Amasegowda ,&nbsp;Sneha Yadav ,&nbsp;Ragesh Nath R ,&nbsp;Udaya Kumar A. H ,&nbsp;Sneha Narayan Kulkarni ,&nbsp;Harikaranahalli Puttaiah Shivaraju ,&nbsp;N.K. Lokanath","doi":"10.1016/j.mtsust.2024.101017","DOIUrl":null,"url":null,"abstract":"<div><div>Employing a Step-scheme (S-scheme) configuration combined with a cocatalyst offers an effective approach to boost the photocatalytic efficiency of nano-heterostructures. In this study, Ag/AgO nanoparticles were integrated into a 2D/2D heterojunction (g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>) for the photocatalytic degradation of amoxicillin and ciprofloxacin under visible light exposure. Various comprehensive investigative techniques were utilized to verify the composition, formation, and band structure of the g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>–Ag/AgO heterostructure. The embedded Ag/AgO nanoparticles play a dual role: capturing carriers of charge and encouraging electron-hole separation, thus creating a heterojunction of the p-n S-scheme that improves the electrons and holes redox potential for surface reactions. The 2D/2D morphology enables substantial interfacial contact, while Ag/AgO nanoparticles act as cocatalysts, improving electron extraction, affecting product selectivity, and boosting catalytic activity. The optimized g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>–Ag/AgO composite exhibits significant photocatalytic degradation of ciprofloxacin (CIP) and amoxicillin (AMX) under the influence of visible light, reaching elimination rates of 58.8% and 62.1% within 270 min, respectively. Additionally, •O<sub>2</sub>⁻ and h⁺ are the primary active species, with •O<sub>2</sub>⁻ leading the photocatalytic elimination of CIP and AMX. This study highlights a potential strategy to developing photocatalysts with a high elimination efficiency of antibiotics by harnessing the enhanced reducing and oxidizing capabilities of S-scheme heterojunctions through meticulous structural configuration.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101017"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic visible-light photocatalytic degradation of amoxicillin and ciprofloxacin using Ag/AgO-integrated 2D/2D g-C3N4/Ni3V2O8 S-scheme heterostructure\",\"authors\":\"Akhila Amasegowda ,&nbsp;Sneha Yadav ,&nbsp;Ragesh Nath R ,&nbsp;Udaya Kumar A. H ,&nbsp;Sneha Narayan Kulkarni ,&nbsp;Harikaranahalli Puttaiah Shivaraju ,&nbsp;N.K. Lokanath\",\"doi\":\"10.1016/j.mtsust.2024.101017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Employing a Step-scheme (S-scheme) configuration combined with a cocatalyst offers an effective approach to boost the photocatalytic efficiency of nano-heterostructures. In this study, Ag/AgO nanoparticles were integrated into a 2D/2D heterojunction (g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>) for the photocatalytic degradation of amoxicillin and ciprofloxacin under visible light exposure. Various comprehensive investigative techniques were utilized to verify the composition, formation, and band structure of the g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>–Ag/AgO heterostructure. The embedded Ag/AgO nanoparticles play a dual role: capturing carriers of charge and encouraging electron-hole separation, thus creating a heterojunction of the p-n S-scheme that improves the electrons and holes redox potential for surface reactions. The 2D/2D morphology enables substantial interfacial contact, while Ag/AgO nanoparticles act as cocatalysts, improving electron extraction, affecting product selectivity, and boosting catalytic activity. The optimized g-C<sub>3</sub>N<sub>4</sub>/Ni<sub>3</sub>V<sub>2</sub>O<sub>8</sub>–Ag/AgO composite exhibits significant photocatalytic degradation of ciprofloxacin (CIP) and amoxicillin (AMX) under the influence of visible light, reaching elimination rates of 58.8% and 62.1% within 270 min, respectively. Additionally, •O<sub>2</sub>⁻ and h⁺ are the primary active species, with •O<sub>2</sub>⁻ leading the photocatalytic elimination of CIP and AMX. This study highlights a potential strategy to developing photocatalysts with a high elimination efficiency of antibiotics by harnessing the enhanced reducing and oxidizing capabilities of S-scheme heterojunctions through meticulous structural configuration.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 101017\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003531\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003531","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

将阶梯型结构(S-scheme)与共催化剂相结合,是提高纳米异质结构光催化效率的有效方法。在这项研究中,Ag/AgO 纳米粒子被集成到了 2D/2D 异质结(g-C3N4/Ni3V2O8)中,用于在可见光照射下光催化降解阿莫西林和环丙沙星。利用各种综合研究技术验证了 g-C3N4/Ni3V2O8-Ag/AgO 异质结构的组成、形成和能带结构。嵌入的 Ag/AgO 纳米粒子具有双重作用:捕获电荷载流子和促进电子-空穴分离,从而形成 p-n S 型异质结,提高电子和空穴的氧化还原电位,促进表面反应。2D/2D 形貌可实现大量的界面接触,而 Ag/AgO 纳米粒子则可作为协同催化剂,改善电子萃取,影响产物选择性,并提高催化活性。优化后的 g-C3N4/Ni3V2O8-Ag/AgO 复合材料在可见光的作用下,对环丙沙星(CIP)和阿莫西林(AMX)的光催化降解效果显著,在 270 分钟内消除率分别达到 58.8% 和 62.1%。此外,-O2- 和 h⁺ 是主要的活性物种,其中 -O2- 是光催化消除 CIP 和 AMX 的主要活性物种。这项研究强调了一种潜在的策略,即通过精心的结构配置,利用 S 型异质结增强的还原和氧化能力,开发出具有高抗生素消除效率的光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic visible-light photocatalytic degradation of amoxicillin and ciprofloxacin using Ag/AgO-integrated 2D/2D g-C3N4/Ni3V2O8 S-scheme heterostructure
Employing a Step-scheme (S-scheme) configuration combined with a cocatalyst offers an effective approach to boost the photocatalytic efficiency of nano-heterostructures. In this study, Ag/AgO nanoparticles were integrated into a 2D/2D heterojunction (g-C3N4/Ni3V2O8) for the photocatalytic degradation of amoxicillin and ciprofloxacin under visible light exposure. Various comprehensive investigative techniques were utilized to verify the composition, formation, and band structure of the g-C3N4/Ni3V2O8–Ag/AgO heterostructure. The embedded Ag/AgO nanoparticles play a dual role: capturing carriers of charge and encouraging electron-hole separation, thus creating a heterojunction of the p-n S-scheme that improves the electrons and holes redox potential for surface reactions. The 2D/2D morphology enables substantial interfacial contact, while Ag/AgO nanoparticles act as cocatalysts, improving electron extraction, affecting product selectivity, and boosting catalytic activity. The optimized g-C3N4/Ni3V2O8–Ag/AgO composite exhibits significant photocatalytic degradation of ciprofloxacin (CIP) and amoxicillin (AMX) under the influence of visible light, reaching elimination rates of 58.8% and 62.1% within 270 min, respectively. Additionally, •O2⁻ and h⁺ are the primary active species, with •O2⁻ leading the photocatalytic elimination of CIP and AMX. This study highlights a potential strategy to developing photocatalysts with a high elimination efficiency of antibiotics by harnessing the enhanced reducing and oxidizing capabilities of S-scheme heterojunctions through meticulous structural configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Study on corrosion resistance and microstructure of modified sediment geopolymer materials Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer The interfacial charge change enhanced by Pr0.6Sm0.4Co0·8Mn0·2O3 activated peroxymonosulfate was used for the efficient degradation of tetracycline under the nanoscale domain limiting and distance effect Transition metal atoms embedded graphyne as effective catalysts for nitrate electroreduction to ammonia: A theoretical study Synthesis of biobased poly(ether-ester) from potentially bioproduced betulin and p-coumaric acid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1