{"title":"用于抑制藻类和水消毒的过渡金属基光催化异质结的最新进展:综述","authors":"Yaksha Verma , Gaurav Sharma , Jibran Iqbal , Mu. Naushad , Chin Wei Lai , Amit Kumar , Pooja Dhiman , Ackmez Mudhoo","doi":"10.1016/j.mtsust.2024.101041","DOIUrl":null,"url":null,"abstract":"<div><div>Sustainable energy production and effective water pollution control are critical global priorities. Harmful algal blooms (HABs) and waterborne pathogens pose significant threats to water quality and public health, necessitating efficient and eco-friendly treatment methods. Transition metal-based photocatalytic heterojunctions offer promising solutions by leveraging the unique properties of transition metals to enhance photocatalytic efficiency. This review examines recent advances in these heterojunctions employed for algal inhibition and water disinfection, discussing various heterojunction type (including conventional, p-n, Z-scheme, <em>S</em>-scheme, and Schottky heterojunctions), and their synthesis methods. We elucidate the mechanisms involved, highlighting improved electron transfer, reduced recombination rates, and broadened light absorption. Recent studies on their effectiveness in inhibiting harmful algae and disinfecting water are also reviewed. Current challenges and future research directions to optimize these materials are identified. This is a first comprehensive overview focusing on the contributions of transition metals in photocatalytic heterojunctions for water treatment, aiming to support the development of sustainable technologies.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101041"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in transition metal-based photocatalytic heterojunctions for algal inhibition and water disinfection: A review\",\"authors\":\"Yaksha Verma , Gaurav Sharma , Jibran Iqbal , Mu. Naushad , Chin Wei Lai , Amit Kumar , Pooja Dhiman , Ackmez Mudhoo\",\"doi\":\"10.1016/j.mtsust.2024.101041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sustainable energy production and effective water pollution control are critical global priorities. Harmful algal blooms (HABs) and waterborne pathogens pose significant threats to water quality and public health, necessitating efficient and eco-friendly treatment methods. Transition metal-based photocatalytic heterojunctions offer promising solutions by leveraging the unique properties of transition metals to enhance photocatalytic efficiency. This review examines recent advances in these heterojunctions employed for algal inhibition and water disinfection, discussing various heterojunction type (including conventional, p-n, Z-scheme, <em>S</em>-scheme, and Schottky heterojunctions), and their synthesis methods. We elucidate the mechanisms involved, highlighting improved electron transfer, reduced recombination rates, and broadened light absorption. Recent studies on their effectiveness in inhibiting harmful algae and disinfecting water are also reviewed. Current challenges and future research directions to optimize these materials are identified. This is a first comprehensive overview focusing on the contributions of transition metals in photocatalytic heterojunctions for water treatment, aiming to support the development of sustainable technologies.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 101041\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589234724003774\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234724003774","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent advances in transition metal-based photocatalytic heterojunctions for algal inhibition and water disinfection: A review
Sustainable energy production and effective water pollution control are critical global priorities. Harmful algal blooms (HABs) and waterborne pathogens pose significant threats to water quality and public health, necessitating efficient and eco-friendly treatment methods. Transition metal-based photocatalytic heterojunctions offer promising solutions by leveraging the unique properties of transition metals to enhance photocatalytic efficiency. This review examines recent advances in these heterojunctions employed for algal inhibition and water disinfection, discussing various heterojunction type (including conventional, p-n, Z-scheme, S-scheme, and Schottky heterojunctions), and their synthesis methods. We elucidate the mechanisms involved, highlighting improved electron transfer, reduced recombination rates, and broadened light absorption. Recent studies on their effectiveness in inhibiting harmful algae and disinfecting water are also reviewed. Current challenges and future research directions to optimize these materials are identified. This is a first comprehensive overview focusing on the contributions of transition metals in photocatalytic heterojunctions for water treatment, aiming to support the development of sustainable technologies.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.