Jiacheng Ling , Rongrong Gu , Junchao Wu , Hualong Li , Yuanxi Lin , Yang Hou , Xiaoyi Huang , Ruixi Chu , Tao Xu , Sheng Ye , Song Fan
{"title":"铜-Bi2S3 纳米棒促进活性氧生成,用于前列腺癌的光动力疗法","authors":"Jiacheng Ling , Rongrong Gu , Junchao Wu , Hualong Li , Yuanxi Lin , Yang Hou , Xiaoyi Huang , Ruixi Chu , Tao Xu , Sheng Ye , Song Fan","doi":"10.1016/j.mtsust.2024.101047","DOIUrl":null,"url":null,"abstract":"<div><div>Photodynamic therapy (PDT) has emerged as a promising cancer treatment approach due to its non-invasive and specifically targeted nature. However, the effectiveness of PDT is hindered by the complex synthesis of conventional photosensitizers and inadequate reactive oxygen species (ROS) generation. Here, we synthesize a copper-doped Bi<sub>2</sub>S<sub>3</sub> (Cu-Bi<sub>2</sub>S<sub>3</sub>) nanorod to investigate its PDT potential against PCa. Compared with bulk Bi<sub>2</sub>S<sub>3</sub> (58%), Cu-Bi<sub>2</sub>S<sub>3</sub> nanorod caused 87% of PC3 cells to die under light. The dispersed Cu in the Bi<sub>2</sub>S<sub>3</sub> bulk phase effectively inhibits the recombination of photogenerated electron-hole pairs, ultimately providing a high concentration of charge carriers. DFT calculations show that Cu doping causes the d-band center of Cu-Bi<sub>2</sub>S<sub>3</sub>, promoting the adsorption and activation of O<sub>2</sub> on Cu-Bi<sub>2</sub>S<sub>3</sub> to enhance ROS generation. This work offers a viable solution to the pressing scientific challenge of ROS generation, a key aspect of enhancing the efficacy of PDT for cancer treatment.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"28 ","pages":"Article 101047"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer\",\"authors\":\"Jiacheng Ling , Rongrong Gu , Junchao Wu , Hualong Li , Yuanxi Lin , Yang Hou , Xiaoyi Huang , Ruixi Chu , Tao Xu , Sheng Ye , Song Fan\",\"doi\":\"10.1016/j.mtsust.2024.101047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photodynamic therapy (PDT) has emerged as a promising cancer treatment approach due to its non-invasive and specifically targeted nature. However, the effectiveness of PDT is hindered by the complex synthesis of conventional photosensitizers and inadequate reactive oxygen species (ROS) generation. Here, we synthesize a copper-doped Bi<sub>2</sub>S<sub>3</sub> (Cu-Bi<sub>2</sub>S<sub>3</sub>) nanorod to investigate its PDT potential against PCa. Compared with bulk Bi<sub>2</sub>S<sub>3</sub> (58%), Cu-Bi<sub>2</sub>S<sub>3</sub> nanorod caused 87% of PC3 cells to die under light. The dispersed Cu in the Bi<sub>2</sub>S<sub>3</sub> bulk phase effectively inhibits the recombination of photogenerated electron-hole pairs, ultimately providing a high concentration of charge carriers. DFT calculations show that Cu doping causes the d-band center of Cu-Bi<sub>2</sub>S<sub>3</sub>, promoting the adsorption and activation of O<sub>2</sub> on Cu-Bi<sub>2</sub>S<sub>3</sub> to enhance ROS generation. This work offers a viable solution to the pressing scientific challenge of ROS generation, a key aspect of enhancing the efficacy of PDT for cancer treatment.</div></div>\",\"PeriodicalId\":18322,\"journal\":{\"name\":\"Materials Today Sustainability\",\"volume\":\"28 \",\"pages\":\"Article 101047\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Sustainability\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S258923472400383X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S258923472400383X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Cu-Bi2S3 nanorods promote reactive oxygen species production for photodynamic therapy of prostate cancer
Photodynamic therapy (PDT) has emerged as a promising cancer treatment approach due to its non-invasive and specifically targeted nature. However, the effectiveness of PDT is hindered by the complex synthesis of conventional photosensitizers and inadequate reactive oxygen species (ROS) generation. Here, we synthesize a copper-doped Bi2S3 (Cu-Bi2S3) nanorod to investigate its PDT potential against PCa. Compared with bulk Bi2S3 (58%), Cu-Bi2S3 nanorod caused 87% of PC3 cells to die under light. The dispersed Cu in the Bi2S3 bulk phase effectively inhibits the recombination of photogenerated electron-hole pairs, ultimately providing a high concentration of charge carriers. DFT calculations show that Cu doping causes the d-band center of Cu-Bi2S3, promoting the adsorption and activation of O2 on Cu-Bi2S3 to enhance ROS generation. This work offers a viable solution to the pressing scientific challenge of ROS generation, a key aspect of enhancing the efficacy of PDT for cancer treatment.
期刊介绍:
Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science.
With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.