{"title":"局部凹面非轴对称端壁剖面对高负荷涡轮级联端壁二次流的影响","authors":"Zhiyuan Cao, Xinyu Hao, Xi Gao, Wei Guo","doi":"10.1016/j.ast.2024.109716","DOIUrl":null,"url":null,"abstract":"<div><div>Non-axisymmetric endwall profiling (NAEP) has been widely utilized in reducing secondary flow loss of turbines. However, most of NAEP are designed for the endwall of the entire blade passage, which presents challenges to the design of cooling structures of turbine endwall. This study aims to explore the local concave non-axisymmetric endwall profiling (LCNP) method with the same effect as whole passage NAEP, and reveal the influence mechanism of LCNP on endwall secondary flow structures of a highly-loaded turbine cascade. Under the condition that the maximum depth of LCNP is unchanged, the axial length effect and pitchwise location effect of LCNP are studied, the influence mechanism of LCNP on the secondary flow loss is analyzed, and the genetic algorithm is utilized to optimize LCNP at the optimal position. Results show that as the axial length of the LCNP increases and the pitchwise location gets closer to the suction surface, the intensity and range of the passage vortex are decreased, and the total pressure loss coefficient (loss coefficient) of the turbine cascade is decreased. When LCNP is 100% axial chord in length and at the position of 2/9 pitch, the loss coefficient is reduced by 5.49%. LCNP was optimized at the optimal position, and the optimal LCNP reduced the loss coefficient of the turbine cascade by 6.73%. After the local concave endwall profiling, the loading in the middle of the endwall of the turbine cascade is reduced, and the intensity of the passage vortex is effectively inhibited, which is the mechanism that the loss coefficient of the turbine cascade is reduced. However, after the local concave endwall profiling, the loading in the trailing of the endwall of the turbine cascade is increased, the transverse migration of the new boundary layer in the endwall is accelerated, and the loss coefficient of the near endwall is increased.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109716"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of local concave non-axisymmetric endwall profiling on endwall secondary flows of a highly-loaded turbine cascade\",\"authors\":\"Zhiyuan Cao, Xinyu Hao, Xi Gao, Wei Guo\",\"doi\":\"10.1016/j.ast.2024.109716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Non-axisymmetric endwall profiling (NAEP) has been widely utilized in reducing secondary flow loss of turbines. However, most of NAEP are designed for the endwall of the entire blade passage, which presents challenges to the design of cooling structures of turbine endwall. This study aims to explore the local concave non-axisymmetric endwall profiling (LCNP) method with the same effect as whole passage NAEP, and reveal the influence mechanism of LCNP on endwall secondary flow structures of a highly-loaded turbine cascade. Under the condition that the maximum depth of LCNP is unchanged, the axial length effect and pitchwise location effect of LCNP are studied, the influence mechanism of LCNP on the secondary flow loss is analyzed, and the genetic algorithm is utilized to optimize LCNP at the optimal position. Results show that as the axial length of the LCNP increases and the pitchwise location gets closer to the suction surface, the intensity and range of the passage vortex are decreased, and the total pressure loss coefficient (loss coefficient) of the turbine cascade is decreased. When LCNP is 100% axial chord in length and at the position of 2/9 pitch, the loss coefficient is reduced by 5.49%. LCNP was optimized at the optimal position, and the optimal LCNP reduced the loss coefficient of the turbine cascade by 6.73%. After the local concave endwall profiling, the loading in the middle of the endwall of the turbine cascade is reduced, and the intensity of the passage vortex is effectively inhibited, which is the mechanism that the loss coefficient of the turbine cascade is reduced. However, after the local concave endwall profiling, the loading in the trailing of the endwall of the turbine cascade is increased, the transverse migration of the new boundary layer in the endwall is accelerated, and the loss coefficient of the near endwall is increased.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109716\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008459\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008459","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Effect of local concave non-axisymmetric endwall profiling on endwall secondary flows of a highly-loaded turbine cascade
Non-axisymmetric endwall profiling (NAEP) has been widely utilized in reducing secondary flow loss of turbines. However, most of NAEP are designed for the endwall of the entire blade passage, which presents challenges to the design of cooling structures of turbine endwall. This study aims to explore the local concave non-axisymmetric endwall profiling (LCNP) method with the same effect as whole passage NAEP, and reveal the influence mechanism of LCNP on endwall secondary flow structures of a highly-loaded turbine cascade. Under the condition that the maximum depth of LCNP is unchanged, the axial length effect and pitchwise location effect of LCNP are studied, the influence mechanism of LCNP on the secondary flow loss is analyzed, and the genetic algorithm is utilized to optimize LCNP at the optimal position. Results show that as the axial length of the LCNP increases and the pitchwise location gets closer to the suction surface, the intensity and range of the passage vortex are decreased, and the total pressure loss coefficient (loss coefficient) of the turbine cascade is decreased. When LCNP is 100% axial chord in length and at the position of 2/9 pitch, the loss coefficient is reduced by 5.49%. LCNP was optimized at the optimal position, and the optimal LCNP reduced the loss coefficient of the turbine cascade by 6.73%. After the local concave endwall profiling, the loading in the middle of the endwall of the turbine cascade is reduced, and the intensity of the passage vortex is effectively inhibited, which is the mechanism that the loss coefficient of the turbine cascade is reduced. However, after the local concave endwall profiling, the loading in the trailing of the endwall of the turbine cascade is increased, the transverse migration of the new boundary layer in the endwall is accelerated, and the loss coefficient of the near endwall is increased.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.